View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AccelerationUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.DurationUnit;
8   import org.djunits.unit.EnergyUnit;
9   import org.djunits.unit.FlowVolumeUnit;
10  import org.djunits.unit.ForceUnit;
11  import org.djunits.unit.FrequencyUnit;
12  import org.djunits.unit.LengthUnit;
13  import org.djunits.unit.MomentumUnit;
14  import org.djunits.unit.PowerUnit;
15  import org.djunits.unit.SpeedUnit;
16  import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRel;
17  import org.djunits.value.vfloat.scalar.base.FloatScalar;
18  import org.djutils.base.NumberParser;
19  import org.djutils.exceptions.Throw;
20  
21  import jakarta.annotation.Generated;
22  
23  /**
24   * Easy access methods for the FloatSpeed FloatScalar, which is relative by definition.
25   * <p>
26   * Copyright (c) 2013-2023 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
27   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
28   * </p>
29   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
30   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
31   */
32  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-04-30T13:59:27.633664900Z")
33  public class FloatSpeed extends AbstractFloatScalarRel<SpeedUnit, FloatSpeed>
34  {
35      /** */
36      private static final long serialVersionUID = 20150901L;
37  
38      /** Constant with value zero. */
39      public static final FloatSpeed ZERO = new FloatSpeed(0.0f, SpeedUnit.SI);
40  
41      /** Constant with value one. */
42      public static final FloatSpeed ONE = new FloatSpeed(1.0f, SpeedUnit.SI);
43  
44      /** Constant with value NaN. */
45      @SuppressWarnings("checkstyle:constantname")
46      public static final FloatSpeed NaN = new FloatSpeed(Float.NaN, SpeedUnit.SI);
47  
48      /** Constant with value POSITIVE_INFINITY. */
49      public static final FloatSpeed POSITIVE_INFINITY = new FloatSpeed(Float.POSITIVE_INFINITY, SpeedUnit.SI);
50  
51      /** Constant with value NEGATIVE_INFINITY. */
52      public static final FloatSpeed NEGATIVE_INFINITY = new FloatSpeed(Float.NEGATIVE_INFINITY, SpeedUnit.SI);
53  
54      /** Constant with value MAX_VALUE. */
55      public static final FloatSpeed POS_MAXVALUE = new FloatSpeed(Float.MAX_VALUE, SpeedUnit.SI);
56  
57      /** Constant with value -MAX_VALUE. */
58      public static final FloatSpeed NEG_MAXVALUE = new FloatSpeed(-Float.MAX_VALUE, SpeedUnit.SI);
59  
60      /**
61       * Construct FloatSpeed scalar.
62       * @param value float; the float value
63       * @param unit unit for the float value
64       */
65      public FloatSpeed(final float value, final SpeedUnit unit)
66      {
67          super(value, unit);
68      }
69  
70      /**
71       * Construct FloatSpeed scalar.
72       * @param value Scalar from which to construct this instance
73       */
74      public FloatSpeed(final FloatSpeed value)
75      {
76          super(value);
77      }
78  
79      /**
80       * Construct FloatSpeed scalar using a double value.
81       * @param value double; the double value
82       * @param unit unit for the resulting float value
83       */
84      public FloatSpeed(final double value, final SpeedUnit unit)
85      {
86          super((float) value, unit);
87      }
88  
89      /** {@inheritDoc} */
90      @Override
91      public final FloatSpeed instantiateRel(final float value, final SpeedUnit unit)
92      {
93          return new FloatSpeed(value, unit);
94      }
95  
96      /**
97       * Construct FloatSpeed scalar.
98       * @param value float; the float value in SI units
99       * @return the new scalar with the SI value
100      */
101     public static final FloatSpeed instantiateSI(final float value)
102     {
103         return new FloatSpeed(value, SpeedUnit.SI);
104     }
105 
106     /**
107      * Interpolate between two values.
108      * @param zero the low value
109      * @param one the high value
110      * @param ratio double; the ratio between 0 and 1, inclusive
111      * @return a Scalar at the ratio between
112      */
113     public static FloatSpeed interpolate(final FloatSpeed zero, final FloatSpeed one, final float ratio)
114     {
115         return new FloatSpeed(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
116                 zero.getDisplayUnit());
117     }
118 
119     /**
120      * Return the maximum value of two relative scalars.
121      * @param r1 the first scalar
122      * @param r2 the second scalar
123      * @return the maximum value of two relative scalars
124      */
125     public static FloatSpeed max(final FloatSpeed r1, final FloatSpeed r2)
126     {
127         return r1.gt(r2) ? r1 : r2;
128     }
129 
130     /**
131      * Return the maximum value of more than two relative scalars.
132      * @param r1 the first scalar
133      * @param r2 the second scalar
134      * @param rn the other scalars
135      * @return the maximum value of more than two relative scalars
136      */
137     public static FloatSpeed max(final FloatSpeed r1, final FloatSpeed r2, final FloatSpeed... rn)
138     {
139         FloatSpeed maxr = r1.gt(r2) ? r1 : r2;
140         for (FloatSpeed r : rn)
141         {
142             if (r.gt(maxr))
143             {
144                 maxr = r;
145             }
146         }
147         return maxr;
148     }
149 
150     /**
151      * Return the minimum value of two relative scalars.
152      * @param r1 the first scalar
153      * @param r2 the second scalar
154      * @return the minimum value of two relative scalars
155      */
156     public static FloatSpeed min(final FloatSpeed r1, final FloatSpeed r2)
157     {
158         return r1.lt(r2) ? r1 : r2;
159     }
160 
161     /**
162      * Return the minimum value of more than two relative scalars.
163      * @param r1 the first scalar
164      * @param r2 the second scalar
165      * @param rn the other scalars
166      * @return the minimum value of more than two relative scalars
167      */
168     public static FloatSpeed min(final FloatSpeed r1, final FloatSpeed r2, final FloatSpeed... rn)
169     {
170         FloatSpeed minr = r1.lt(r2) ? r1 : r2;
171         for (FloatSpeed r : rn)
172         {
173             if (r.lt(minr))
174             {
175                 minr = r;
176             }
177         }
178         return minr;
179     }
180 
181     /**
182      * Returns a FloatSpeed representation of a textual representation of a value with a unit. The String representation that
183      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
184      * allowed, but not required, between the value and the unit.
185      * @param text String; the textual representation to parse into a FloatSpeed
186      * @return FloatSpeed; the Scalar representation of the value in its unit
187      * @throws IllegalArgumentException when the text cannot be parsed
188      * @throws NullPointerException when the text argument is null
189      */
190     public static FloatSpeed valueOf(final String text)
191     {
192         Throw.whenNull(text, "Error parsing FloatSpeed: text to parse is null");
193         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatSpeed: empty text to parse");
194         try
195         {
196             NumberParser numberParser = new NumberParser().lenient().trailing();
197             float f = numberParser.parseFloat(text);
198             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
199             SpeedUnit unit = SpeedUnit.BASE.getUnitByAbbreviation(unitString);
200             if (unit == null)
201                 throw new IllegalArgumentException("Unit " + unitString + " not found");
202             return new FloatSpeed(f, unit);
203         }
204         catch (Exception exception)
205         {
206             throw new IllegalArgumentException(
207                     "Error parsing FloatSpeed from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
208                     exception);
209         }
210     }
211 
212     /**
213      * Returns a FloatSpeed based on a value and the textual representation of the unit, which can be localized.
214      * @param value double; the value to use
215      * @param unitString String; the textual representation of the unit
216      * @return FloatSpeed; the Scalar representation of the value in its unit
217      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
218      * @throws NullPointerException when the unitString argument is null
219      */
220     public static FloatSpeed of(final float value, final String unitString)
221     {
222         Throw.whenNull(unitString, "Error parsing FloatSpeed: unitString is null");
223         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatSpeed: empty unitString");
224         SpeedUnit unit = SpeedUnit.BASE.getUnitByAbbreviation(unitString);
225         if (unit != null)
226         {
227             return new FloatSpeed(value, unit);
228         }
229         throw new IllegalArgumentException("Error parsing FloatSpeed with unit " + unitString);
230     }
231 
232     /**
233      * Calculate the division of FloatSpeed and FloatSpeed, which results in a FloatDimensionless scalar.
234      * @param v FloatSpeed; scalar
235      * @return FloatDimensionless; scalar as a division of FloatSpeed and FloatSpeed
236      */
237     public final FloatDimensionless divide(final FloatSpeed v)
238     {
239         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
240     }
241 
242     /**
243      * Calculate the multiplication of FloatSpeed and FloatArea, which results in a FloatFlowVolume scalar.
244      * @param v FloatSpeed; scalar
245      * @return FloatFlowVolume; scalar as a multiplication of FloatSpeed and FloatArea
246      */
247     public final FloatFlowVolume times(final FloatArea v)
248     {
249         return new FloatFlowVolume(this.si * v.si, FlowVolumeUnit.SI);
250     }
251 
252     /**
253      * Calculate the multiplication of FloatSpeed and FloatForce, which results in a FloatPower scalar.
254      * @param v FloatSpeed; scalar
255      * @return FloatPower; scalar as a multiplication of FloatSpeed and FloatForce
256      */
257     public final FloatPower times(final FloatForce v)
258     {
259         return new FloatPower(this.si * v.si, PowerUnit.SI);
260     }
261 
262     /**
263      * Calculate the multiplication of FloatSpeed and FloatFrequency, which results in a FloatAcceleration scalar.
264      * @param v FloatSpeed; scalar
265      * @return FloatAcceleration; scalar as a multiplication of FloatSpeed and FloatFrequency
266      */
267     public final FloatAcceleration times(final FloatFrequency v)
268     {
269         return new FloatAcceleration(this.si * v.si, AccelerationUnit.SI);
270     }
271 
272     /**
273      * Calculate the division of FloatSpeed and FloatLength, which results in a FloatFrequency scalar.
274      * @param v FloatSpeed; scalar
275      * @return FloatFrequency; scalar as a division of FloatSpeed and FloatLength
276      */
277     public final FloatFrequency divide(final FloatLength v)
278     {
279         return new FloatFrequency(this.si / v.si, FrequencyUnit.SI);
280     }
281 
282     /**
283      * Calculate the division of FloatSpeed and FloatFrequency, which results in a FloatLength scalar.
284      * @param v FloatSpeed; scalar
285      * @return FloatLength; scalar as a division of FloatSpeed and FloatFrequency
286      */
287     public final FloatLength divide(final FloatFrequency v)
288     {
289         return new FloatLength(this.si / v.si, LengthUnit.SI);
290     }
291 
292     /**
293      * Calculate the multiplication of FloatSpeed and FloatLinearDensity, which results in a FloatFrequency scalar.
294      * @param v FloatSpeed; scalar
295      * @return FloatFrequency; scalar as a multiplication of FloatSpeed and FloatLinearDensity
296      */
297     public final FloatFrequency times(final FloatLinearDensity v)
298     {
299         return new FloatFrequency(this.si * v.si, FrequencyUnit.SI);
300     }
301 
302     /**
303      * Calculate the multiplication of FloatSpeed and FloatDuration, which results in a FloatLength scalar.
304      * @param v FloatSpeed; scalar
305      * @return FloatLength; scalar as a multiplication of FloatSpeed and FloatDuration
306      */
307     public final FloatLength times(final FloatDuration v)
308     {
309         return new FloatLength(this.si * v.si, LengthUnit.SI);
310     }
311 
312     /**
313      * Calculate the division of FloatSpeed and FloatDuration, which results in a FloatAcceleration scalar.
314      * @param v FloatSpeed; scalar
315      * @return FloatAcceleration; scalar as a division of FloatSpeed and FloatDuration
316      */
317     public final FloatAcceleration divide(final FloatDuration v)
318     {
319         return new FloatAcceleration(this.si / v.si, AccelerationUnit.SI);
320     }
321 
322     /**
323      * Calculate the division of FloatSpeed and FloatAcceleration, which results in a FloatDuration scalar.
324      * @param v FloatSpeed; scalar
325      * @return FloatDuration; scalar as a division of FloatSpeed and FloatAcceleration
326      */
327     public final FloatDuration divide(final FloatAcceleration v)
328     {
329         return new FloatDuration(this.si / v.si, DurationUnit.SI);
330     }
331 
332     /**
333      * Calculate the multiplication of FloatSpeed and FloatFlowMass, which results in a FloatForce scalar.
334      * @param v FloatSpeed; scalar
335      * @return FloatForce; scalar as a multiplication of FloatSpeed and FloatFlowMass
336      */
337     public final FloatForce times(final FloatFlowMass v)
338     {
339         return new FloatForce(this.si * v.si, ForceUnit.SI);
340     }
341 
342     /**
343      * Calculate the multiplication of FloatSpeed and FloatMass, which results in a FloatMomentum scalar.
344      * @param v FloatSpeed; scalar
345      * @return FloatMomentum; scalar as a multiplication of FloatSpeed and FloatMass
346      */
347     public final FloatMomentum times(final FloatMass v)
348     {
349         return new FloatMomentum(this.si * v.si, MomentumUnit.SI);
350     }
351 
352     /**
353      * Calculate the multiplication of FloatSpeed and FloatMomentum, which results in a FloatEnergy scalar.
354      * @param v FloatSpeed; scalar
355      * @return FloatEnergy; scalar as a multiplication of FloatSpeed and FloatMomentum
356      */
357     public final FloatEnergy times(final FloatMomentum v)
358     {
359         return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
360     }
361 
362     /** {@inheritDoc} */
363     @Override
364     public FloatSIScalar reciprocal()
365     {
366         return FloatScalar.divide(FloatDimensionless.ONE, this);
367     }
368 
369 }