View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.DurationUnit;
8   import org.djunits.unit.EnergyUnit;
9   import org.djunits.unit.LengthUnit;
10  import org.djunits.unit.LinearDensityUnit;
11  import org.djunits.unit.MomentumUnit;
12  import org.djunits.unit.PositionUnit;
13  import org.djunits.unit.SpeedUnit;
14  import org.djunits.unit.VolumeUnit;
15  import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRelWithAbs;
16  import org.djutils.base.NumberParser;
17  import org.djutils.exceptions.Throw;
18  
19  import jakarta.annotation.Generated;
20  
21  /**
22   * Easy access methods for the FloatLength FloatScalar.
23   * <p>
24   * Copyright (c) 2013-2023 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
25   * All rights reserved. <br>
26   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
27   * </p>
28   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
29   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
30   */
31  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-04-30T13:59:27.633664900Z")
32  public class FloatLength extends AbstractFloatScalarRelWithAbs<PositionUnit, FloatPosition, LengthUnit, FloatLength>
33  {
34      /** */
35      private static final long serialVersionUID = 20150901L;
36  
37      /** Constant with value zero. */
38      public static final FloatLength ZERO = new FloatLength(0.0f, LengthUnit.SI);
39  
40      /** Constant with value one. */
41      public static final FloatLength ONE = new FloatLength(1.0f, LengthUnit.SI);
42  
43      /** Constant with value NaN. */
44      @SuppressWarnings("checkstyle:constantname")
45      public static final FloatLength NaN = new FloatLength(Float.NaN, LengthUnit.SI);
46  
47      /** Constant with value POSITIVE_INFINITY. */
48      public static final FloatLength POSITIVE_INFINITY = new FloatLength(Float.POSITIVE_INFINITY, LengthUnit.SI);
49  
50      /** Constant with value NEGATIVE_INFINITY. */
51      public static final FloatLength NEGATIVE_INFINITY = new FloatLength(Float.NEGATIVE_INFINITY, LengthUnit.SI);
52  
53      /** Constant with value MAX_VALUE. */
54      public static final FloatLength POS_MAXVALUE = new FloatLength(Float.MAX_VALUE, LengthUnit.SI);
55  
56      /** Constant with value -MAX_VALUE. */
57      public static final FloatLength NEG_MAXVALUE = new FloatLength(-Float.MAX_VALUE, LengthUnit.SI);
58  
59      /**
60       * Construct FloatLength scalar.
61       * @param value float; the float value
62       * @param unit LengthUnit; unit for the float value
63       */
64      public FloatLength(final float value, final LengthUnit unit)
65      {
66          super(value, unit);
67      }
68  
69      /**
70       * Construct FloatLength scalar.
71       * @param value FloatLength; Scalar from which to construct this instance
72       */
73      public FloatLength(final FloatLength value)
74      {
75          super(value);
76      }
77  
78      /**
79       * Construct FloatLength scalar using a double value.
80       * @param value double; the double value
81       * @param unit LengthUnit; unit for the resulting float value
82       */
83      public FloatLength(final double value, final LengthUnit unit)
84      {
85          super((float) value, unit);
86      }
87  
88      /** {@inheritDoc} */
89      @Override
90      public final FloatLength instantiateRel(final float value, final LengthUnit unit)
91      {
92          return new FloatLength(value, unit);
93      }
94  
95      /**
96       * Construct FloatLength scalar.
97       * @param value float; the float value in SI units
98       * @return FloatLength; the new scalar with the SI value
99       */
100     public static final FloatLength instantiateSI(final float value)
101     {
102         return new FloatLength(value, LengthUnit.SI);
103     }
104 
105     /** {@inheritDoc} */
106     @Override
107     public final FloatPosition instantiateAbs(final float value, final PositionUnit unit)
108     {
109         return new FloatPosition(value, unit);
110     }
111 
112     /**
113      * Interpolate between two values.
114      * @param zero FloatLength; the low value
115      * @param one FloatLength; the high value
116      * @param ratio double; the ratio between 0 and 1, inclusive
117      * @return FloatLength; a Scalar at the ratio between
118      */
119     public static FloatLength interpolate(final FloatLength zero, final FloatLength one, final float ratio)
120     {
121         return new FloatLength(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
122                 zero.getDisplayUnit());
123     }
124 
125     /**
126      * Return the maximum value of two relative scalars.
127      * @param r1 FloatLength; the first scalar
128      * @param r2 FloatLength; the second scalar
129      * @return FloatLength; the maximum value of two relative scalars
130      */
131     public static FloatLength max(final FloatLength r1, final FloatLength r2)
132     {
133         return r1.gt(r2) ? r1 : r2;
134     }
135 
136     /**
137      * Return the maximum value of more than two relative scalars.
138      * @param r1 FloatLength; the first scalar
139      * @param r2 FloatLength; the second scalar
140      * @param rn FloatLength...; the other scalars
141      * @return FloatLength; the maximum value of more than two relative scalars
142      */
143     public static FloatLength max(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
144     {
145         FloatLength maxr = r1.gt(r2) ? r1 : r2;
146         for (FloatLength r : rn)
147         {
148             if (r.gt(maxr))
149             {
150                 maxr = r;
151             }
152         }
153         return maxr;
154     }
155 
156     /**
157      * Return the minimum value of two relative scalars.
158      * @param r1 FloatLength; the first scalar
159      * @param r2 FloatLength; the second scalar
160      * @return FloatLength; the minimum value of two relative scalars
161      */
162     public static FloatLength min(final FloatLength r1, final FloatLength r2)
163     {
164         return r1.lt(r2) ? r1 : r2;
165     }
166 
167     /**
168      * Return the minimum value of more than two relative scalars.
169      * @param r1 FloatLength; the first scalar
170      * @param r2 FloatLength; the second scalar
171      * @param rn FloatLength...; the other scalars
172      * @return FloatLength; the minimum value of more than two relative scalars
173      */
174     public static FloatLength min(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
175     {
176         FloatLength minr = r1.lt(r2) ? r1 : r2;
177         for (FloatLength r : rn)
178         {
179             if (r.lt(minr))
180             {
181                 minr = r;
182             }
183         }
184         return minr;
185     }
186 
187     /**
188      * Returns a FloatLength representation of a textual representation of a value with a unit. The String representation that
189      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
190      * allowed, but not required, between the value and the unit.
191      * @param text String; the textual representation to parse into a FloatLength
192      * @return FloatLength; the Scalar representation of the value in its unit
193      * @throws IllegalArgumentException when the text cannot be parsed
194      * @throws NullPointerException when the text argument is null
195      */
196     public static FloatLength valueOf(final String text)
197     {
198         Throw.whenNull(text, "Error parsing FloatLength: text to parse is null");
199         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatLength: empty text to parse");
200         try
201         {
202             NumberParser numberParser = new NumberParser().lenient().trailing();
203             float f = numberParser.parseFloat(text);
204             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
205             LengthUnit unit = LengthUnit.BASE.getUnitByAbbreviation(unitString);
206             if (unit == null)
207                 throw new IllegalArgumentException("Unit " + unitString + " not found");
208             return new FloatLength(f, unit);
209         }
210         catch (Exception exception)
211         {
212             throw new IllegalArgumentException(
213                     "Error parsing FloatLength from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
214                     exception);
215         }
216     }
217 
218     /**
219      * Returns a FloatLength based on a value and the textual representation of the unit, which can be localized.
220      * @param value double; the value to use
221      * @param unitString String; the textual representation of the unit
222      * @return FloatLength; the Scalar representation of the value in its unit
223      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
224      * @throws NullPointerException when the unitString argument is null
225      */
226     public static FloatLength of(final float value, final String unitString)
227     {
228         Throw.whenNull(unitString, "Error parsing FloatLength: unitString is null");
229         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatLength: empty unitString");
230         LengthUnit unit = LengthUnit.BASE.getUnitByAbbreviation(unitString);
231         if (unit != null)
232         {
233             return new FloatLength(value, unit);
234         }
235         throw new IllegalArgumentException("Error parsing FloatLength with unit " + unitString);
236     }
237 
238     /**
239      * Calculate the division of FloatLength and FloatLength, which results in a FloatDimensionless scalar.
240      * @param v FloatLength; scalar
241      * @return FloatDimensionless; scalar as a division of FloatLength and FloatLength
242      */
243     public final FloatDimensionless divide(final FloatLength v)
244     {
245         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
246     }
247 
248     /**
249      * Calculate the multiplication of FloatLength and FloatLinearDensity, which results in a FloatDimensionless scalar.
250      * @param v FloatLength; scalar
251      * @return FloatDimensionless; scalar as a multiplication of FloatLength and FloatLinearDensity
252      */
253     public final FloatDimensionless times(final FloatLinearDensity v)
254     {
255         return new FloatDimensionless(this.si * v.si, DimensionlessUnit.SI);
256     }
257 
258     /**
259      * Calculate the multiplication of FloatLength and FloatLength, which results in a FloatArea scalar.
260      * @param v FloatLength; scalar
261      * @return FloatArea; scalar as a multiplication of FloatLength and FloatLength
262      */
263     public final FloatArea times(final FloatLength v)
264     {
265         return new FloatArea(this.si * v.si, AreaUnit.SI);
266     }
267 
268     /**
269      * Calculate the division of FloatLength and FloatLinearDensity, which results in a FloatArea scalar.
270      * @param v FloatLength; scalar
271      * @return FloatArea; scalar as a division of FloatLength and FloatLinearDensity
272      */
273     public final FloatArea divide(final FloatLinearDensity v)
274     {
275         return new FloatArea(this.si / v.si, AreaUnit.SI);
276     }
277 
278     /**
279      * Calculate the division of FloatLength and FloatArea, which results in a FloatLinearDensity scalar.
280      * @param v FloatLength; scalar
281      * @return FloatLinearDensity; scalar as a division of FloatLength and FloatArea
282      */
283     public final FloatLinearDensity divide(final FloatArea v)
284     {
285         return new FloatLinearDensity(this.si / v.si, LinearDensityUnit.SI);
286     }
287 
288     /**
289      * Calculate the multiplication of FloatLength and FloatArea, which results in a FloatVolume scalar.
290      * @param v FloatLength; scalar
291      * @return FloatVolume; scalar as a multiplication of FloatLength and FloatArea
292      */
293     public final FloatVolume times(final FloatArea v)
294     {
295         return new FloatVolume(this.si * v.si, VolumeUnit.SI);
296     }
297 
298     /**
299      * Calculate the multiplication of FloatLength and FloatForce, which results in a FloatEnergy scalar.
300      * @param v FloatLength; scalar
301      * @return FloatEnergy; scalar as a multiplication of FloatLength and FloatForce
302      */
303     public final FloatEnergy times(final FloatForce v)
304     {
305         return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
306     }
307 
308     /**
309      * Calculate the multiplication of FloatLength and FloatFrequency, which results in a FloatSpeed scalar.
310      * @param v FloatLength; scalar
311      * @return FloatSpeed; scalar as a multiplication of FloatLength and FloatFrequency
312      */
313     public final FloatSpeed times(final FloatFrequency v)
314     {
315         return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
316     }
317 
318     /**
319      * Calculate the division of FloatLength and FloatDuration, which results in a FloatSpeed scalar.
320      * @param v FloatLength; scalar
321      * @return FloatSpeed; scalar as a division of FloatLength and FloatDuration
322      */
323     public final FloatSpeed divide(final FloatDuration v)
324     {
325         return new FloatSpeed(this.si / v.si, SpeedUnit.SI);
326     }
327 
328     /**
329      * Calculate the division of FloatLength and FloatSpeed, which results in a FloatDuration scalar.
330      * @param v FloatLength; scalar
331      * @return FloatDuration; scalar as a division of FloatLength and FloatSpeed
332      */
333     public final FloatDuration divide(final FloatSpeed v)
334     {
335         return new FloatDuration(this.si / v.si, DurationUnit.SI);
336     }
337 
338     /**
339      * Calculate the multiplication of FloatLength and FloatFlowMass, which results in a FloatMomentum scalar.
340      * @param v FloatLength; scalar
341      * @return FloatMomentum; scalar as a multiplication of FloatLength and FloatFlowMass
342      */
343     public final FloatMomentum times(final FloatFlowMass v)
344     {
345         return new FloatMomentum(this.si * v.si, MomentumUnit.SI);
346     }
347 
348     /** {@inheritDoc} */
349     @Override
350     public FloatLinearDensity reciprocal()
351     {
352         return FloatLinearDensity.instantiateSI(1.0f / this.si);
353     }
354 
355 }