View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DimensionlessUnit;
6   import org.djunits.unit.DurationUnit;
7   import org.djunits.unit.EnergyUnit;
8   import org.djunits.unit.ForceUnit;
9   import org.djunits.unit.LengthUnit;
10  import org.djunits.unit.MomentumUnit;
11  import org.djunits.unit.PowerUnit;
12  import org.djunits.unit.PressureUnit;
13  import org.djunits.unit.SpeedUnit;
14  import org.djunits.unit.VolumeUnit;
15  import org.djunits.value.vfloat.scalar.base.FloatScalar;
16  import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
17  import org.djutils.base.NumberParser;
18  import org.djutils.exceptions.Throw;
19  
20  import jakarta.annotation.Generated;
21  
22  /**
23   * Easy access methods for the FloatEnergy FloatScalar, which is relative by definition.
24   * <p>
25   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
26   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
27   * </p>
28   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
29   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
30   */
31  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
32  public class FloatEnergy extends FloatScalarRel<EnergyUnit, FloatEnergy>
33  {
34      /** */
35      private static final long serialVersionUID = 20150901L;
36  
37      /** Constant with value zero. */
38      public static final FloatEnergy ZERO = new FloatEnergy(0.0f, EnergyUnit.SI);
39  
40      /** Constant with value one. */
41      public static final FloatEnergy ONE = new FloatEnergy(1.0f, EnergyUnit.SI);
42  
43      /** Constant with value NaN. */
44      @SuppressWarnings("checkstyle:constantname")
45      public static final FloatEnergy NaN = new FloatEnergy(Float.NaN, EnergyUnit.SI);
46  
47      /** Constant with value POSITIVE_INFINITY. */
48      public static final FloatEnergy POSITIVE_INFINITY = new FloatEnergy(Float.POSITIVE_INFINITY, EnergyUnit.SI);
49  
50      /** Constant with value NEGATIVE_INFINITY. */
51      public static final FloatEnergy NEGATIVE_INFINITY = new FloatEnergy(Float.NEGATIVE_INFINITY, EnergyUnit.SI);
52  
53      /** Constant with value MAX_VALUE. */
54      public static final FloatEnergy POS_MAXVALUE = new FloatEnergy(Float.MAX_VALUE, EnergyUnit.SI);
55  
56      /** Constant with value -MAX_VALUE. */
57      public static final FloatEnergy NEG_MAXVALUE = new FloatEnergy(-Float.MAX_VALUE, EnergyUnit.SI);
58  
59      /**
60       * Construct FloatEnergy scalar.
61       * @param value float; the float value
62       * @param unit unit for the float value
63       */
64      public FloatEnergy(final float value, final EnergyUnit unit)
65      {
66          super(value, unit);
67      }
68  
69      /**
70       * Construct FloatEnergy scalar.
71       * @param value Scalar from which to construct this instance
72       */
73      public FloatEnergy(final FloatEnergy value)
74      {
75          super(value);
76      }
77  
78      /**
79       * Construct FloatEnergy scalar using a double value.
80       * @param value double; the double value
81       * @param unit unit for the resulting float value
82       */
83      public FloatEnergy(final double value, final EnergyUnit unit)
84      {
85          super((float) value, unit);
86      }
87  
88      @Override
89      public final FloatEnergy instantiateRel(final float value, final EnergyUnit unit)
90      {
91          return new FloatEnergy(value, unit);
92      }
93  
94      /**
95       * Construct FloatEnergy scalar.
96       * @param value float; the float value in SI units
97       * @return the new scalar with the SI value
98       */
99      public static final FloatEnergy instantiateSI(final float value)
100     {
101         return new FloatEnergy(value, EnergyUnit.SI);
102     }
103 
104     /**
105      * Interpolate between two values.
106      * @param zero the low value
107      * @param one the high value
108      * @param ratio double; the ratio between 0 and 1, inclusive
109      * @return a Scalar at the ratio between
110      */
111     public static FloatEnergy interpolate(final FloatEnergy zero, final FloatEnergy one, final float ratio)
112     {
113         return new FloatEnergy(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
114                 zero.getDisplayUnit());
115     }
116 
117     /**
118      * Return the maximum value of two relative scalars.
119      * @param r1 the first scalar
120      * @param r2 the second scalar
121      * @return the maximum value of two relative scalars
122      */
123     public static FloatEnergy max(final FloatEnergy r1, final FloatEnergy r2)
124     {
125         return r1.gt(r2) ? r1 : r2;
126     }
127 
128     /**
129      * Return the maximum value of more than two relative scalars.
130      * @param r1 the first scalar
131      * @param r2 the second scalar
132      * @param rn the other scalars
133      * @return the maximum value of more than two relative scalars
134      */
135     public static FloatEnergy max(final FloatEnergy r1, final FloatEnergy r2, final FloatEnergy... rn)
136     {
137         FloatEnergy maxr = r1.gt(r2) ? r1 : r2;
138         for (FloatEnergy r : rn)
139         {
140             if (r.gt(maxr))
141             {
142                 maxr = r;
143             }
144         }
145         return maxr;
146     }
147 
148     /**
149      * Return the minimum value of two relative scalars.
150      * @param r1 the first scalar
151      * @param r2 the second scalar
152      * @return the minimum value of two relative scalars
153      */
154     public static FloatEnergy min(final FloatEnergy r1, final FloatEnergy r2)
155     {
156         return r1.lt(r2) ? r1 : r2;
157     }
158 
159     /**
160      * Return the minimum value of more than two relative scalars.
161      * @param r1 the first scalar
162      * @param r2 the second scalar
163      * @param rn the other scalars
164      * @return the minimum value of more than two relative scalars
165      */
166     public static FloatEnergy min(final FloatEnergy r1, final FloatEnergy r2, final FloatEnergy... rn)
167     {
168         FloatEnergy minr = r1.lt(r2) ? r1 : r2;
169         for (FloatEnergy r : rn)
170         {
171             if (r.lt(minr))
172             {
173                 minr = r;
174             }
175         }
176         return minr;
177     }
178 
179     /**
180      * Returns a FloatEnergy representation of a textual representation of a value with a unit. The String representation that
181      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
182      * allowed, but not required, between the value and the unit.
183      * @param text String; the textual representation to parse into a FloatEnergy
184      * @return FloatEnergy; the Scalar representation of the value in its unit
185      * @throws IllegalArgumentException when the text cannot be parsed
186      * @throws NullPointerException when the text argument is null
187      */
188     public static FloatEnergy valueOf(final String text)
189     {
190         Throw.whenNull(text, "Error parsing FloatEnergy: text to parse is null");
191         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatEnergy: empty text to parse");
192         try
193         {
194             NumberParser numberParser = new NumberParser().lenient().trailing();
195             float f = numberParser.parseFloat(text);
196             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
197             EnergyUnit unit = EnergyUnit.BASE.getUnitByAbbreviation(unitString);
198             if (unit == null)
199                 throw new IllegalArgumentException("Unit " + unitString + " not found");
200             return new FloatEnergy(f, unit);
201         }
202         catch (Exception exception)
203         {
204             throw new IllegalArgumentException(
205                     "Error parsing FloatEnergy from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
206                     exception);
207         }
208     }
209 
210     /**
211      * Returns a FloatEnergy based on a value and the textual representation of the unit, which can be localized.
212      * @param value double; the value to use
213      * @param unitString String; the textual representation of the unit
214      * @return FloatEnergy; the Scalar representation of the value in its unit
215      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
216      * @throws NullPointerException when the unitString argument is null
217      */
218     public static FloatEnergy of(final float value, final String unitString)
219     {
220         Throw.whenNull(unitString, "Error parsing FloatEnergy: unitString is null");
221         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatEnergy: empty unitString");
222         EnergyUnit unit = EnergyUnit.BASE.getUnitByAbbreviation(unitString);
223         if (unit != null)
224         {
225             return new FloatEnergy(value, unit);
226         }
227         throw new IllegalArgumentException("Error parsing FloatEnergy with unit " + unitString);
228     }
229 
230     /**
231      * Calculate the division of FloatEnergy and FloatEnergy, which results in a FloatDimensionless scalar.
232      * @param v FloatEnergy; scalar
233      * @return FloatDimensionless; scalar as a division of FloatEnergy and FloatEnergy
234      */
235     public final FloatDimensionless divide(final FloatEnergy v)
236     {
237         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
238     }
239 
240     /**
241      * Calculate the division of FloatEnergy and FloatForce, which results in a FloatLength scalar.
242      * @param v FloatEnergy; scalar
243      * @return FloatLength; scalar as a division of FloatEnergy and FloatForce
244      */
245     public final FloatLength divide(final FloatForce v)
246     {
247         return new FloatLength(this.si / v.si, LengthUnit.SI);
248     }
249 
250     /**
251      * Calculate the division of FloatEnergy and FloatLength, which results in a FloatForce scalar.
252      * @param v FloatEnergy; scalar
253      * @return FloatForce; scalar as a division of FloatEnergy and FloatLength
254      */
255     public final FloatForce divide(final FloatLength v)
256     {
257         return new FloatForce(this.si / v.si, ForceUnit.SI);
258     }
259 
260     /**
261      * Calculate the multiplication of FloatEnergy and FloatLinearDensity, which results in a FloatForce scalar.
262      * @param v FloatEnergy; scalar
263      * @return FloatForce; scalar as a multiplication of FloatEnergy and FloatLinearDensity
264      */
265     public final FloatForce times(final FloatLinearDensity v)
266     {
267         return new FloatForce(this.si * v.si, ForceUnit.SI);
268     }
269 
270     /**
271      * Calculate the division of FloatEnergy and FloatDuration, which results in a FloatPower scalar.
272      * @param v FloatEnergy; scalar
273      * @return FloatPower; scalar as a division of FloatEnergy and FloatDuration
274      */
275     public final FloatPower divide(final FloatDuration v)
276     {
277         return new FloatPower(this.si / v.si, PowerUnit.SI);
278     }
279 
280     /**
281      * Calculate the division of FloatEnergy and FloatPower, which results in a FloatDuration scalar.
282      * @param v FloatEnergy; scalar
283      * @return FloatDuration; scalar as a division of FloatEnergy and FloatPower
284      */
285     public final FloatDuration divide(final FloatPower v)
286     {
287         return new FloatDuration(this.si / v.si, DurationUnit.SI);
288     }
289 
290     /**
291      * Calculate the division of FloatEnergy and FloatVolume, which results in a FloatPressure scalar.
292      * @param v FloatEnergy; scalar
293      * @return FloatPressure; scalar as a division of FloatEnergy and FloatVolume
294      */
295     public final FloatPressure divide(final FloatVolume v)
296     {
297         return new FloatPressure(this.si / v.si, PressureUnit.SI);
298     }
299 
300     /**
301      * Calculate the division of FloatEnergy and FloatPressure, which results in a FloatVolume scalar.
302      * @param v FloatEnergy; scalar
303      * @return FloatVolume; scalar as a division of FloatEnergy and FloatPressure
304      */
305     public final FloatVolume divide(final FloatPressure v)
306     {
307         return new FloatVolume(this.si / v.si, VolumeUnit.SI);
308     }
309 
310     /**
311      * Calculate the multiplication of FloatEnergy and FloatFrequency, which results in a FloatPower scalar.
312      * @param v FloatEnergy; scalar
313      * @return FloatPower; scalar as a multiplication of FloatEnergy and FloatFrequency
314      */
315     public final FloatPower times(final FloatFrequency v)
316     {
317         return new FloatPower(this.si * v.si, PowerUnit.SI);
318     }
319 
320     /**
321      * Calculate the division of FloatEnergy and FloatSpeed, which results in a FloatMomentum scalar.
322      * @param v FloatEnergy; scalar
323      * @return FloatMomentum; scalar as a division of FloatEnergy and FloatSpeed
324      */
325     public final FloatMomentum divide(final FloatSpeed v)
326     {
327         return new FloatMomentum(this.si / v.si, MomentumUnit.SI);
328     }
329 
330     /**
331      * Calculate the division of FloatEnergy and FloatMomentum, which results in a FloatSpeed scalar.
332      * @param v FloatEnergy; scalar
333      * @return FloatSpeed; scalar as a division of FloatEnergy and FloatMomentum
334      */
335     public final FloatSpeed divide(final FloatMomentum v)
336     {
337         return new FloatSpeed(this.si / v.si, SpeedUnit.SI);
338     }
339 
340     @Override
341     public FloatSIScalar reciprocal()
342     {
343         return FloatScalar.divide(FloatDimensionless.ONE, this);
344     }
345 
346 }