View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DensityUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.FlowMassUnit;
8   import org.djunits.unit.FlowVolumeUnit;
9   import org.djunits.unit.ForceUnit;
10  import org.djunits.unit.FrequencyUnit;
11  import org.djunits.unit.MassUnit;
12  import org.djunits.unit.MomentumUnit;
13  import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
14  import org.djutils.base.NumberParser;
15  import org.djutils.exceptions.Throw;
16  
17  import jakarta.annotation.Generated;
18  
19  /**
20   * Easy access methods for the FloatFlowMass FloatScalar, which is relative by definition.
21   * <p>
22   * Copyright (c) 2013-2025 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
23   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
24   * </p>
25   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
26   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
27   */
28  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2025-09-06T15:16:28.380798Z")
29  public class FloatFlowMass extends FloatScalarRel<FlowMassUnit, FloatFlowMass>
30  {
31      /** */
32      private static final long serialVersionUID = 20150901L;
33  
34      /** Constant with value zero. */
35      public static final FloatFlowMass ZERO = new FloatFlowMass(0.0f, FlowMassUnit.SI);
36  
37      /** Constant with value one. */
38      public static final FloatFlowMass ONE = new FloatFlowMass(1.0f, FlowMassUnit.SI);
39  
40      /** Constant with value NaN. */
41      @SuppressWarnings("checkstyle:constantname")
42      public static final FloatFlowMass NaN = new FloatFlowMass(Float.NaN, FlowMassUnit.SI);
43  
44      /** Constant with value POSITIVE_INFINITY. */
45      public static final FloatFlowMass POSITIVE_INFINITY = new FloatFlowMass(Float.POSITIVE_INFINITY, FlowMassUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final FloatFlowMass NEGATIVE_INFINITY = new FloatFlowMass(Float.NEGATIVE_INFINITY, FlowMassUnit.SI);
49  
50      /** Constant with value MAX_VALUE. */
51      public static final FloatFlowMass POS_MAXVALUE = new FloatFlowMass(Float.MAX_VALUE, FlowMassUnit.SI);
52  
53      /** Constant with value -MAX_VALUE. */
54      public static final FloatFlowMass NEG_MAXVALUE = new FloatFlowMass(-Float.MAX_VALUE, FlowMassUnit.SI);
55  
56      /**
57       * Construct FloatFlowMass scalar with a unit.
58       * @param value the float value, expressed in the given unit
59       * @param unit unit for the float value
60       */
61      public FloatFlowMass(final float value, final FlowMassUnit unit)
62      {
63          super(value, unit);
64      }
65  
66      /**
67       * Construct FloatFlowMass scalar.
68       * @param value Scalar from which to construct this instance
69       */
70      public FloatFlowMass(final FloatFlowMass value)
71      {
72          super(value);
73      }
74  
75      /**
76       * Construct FloatFlowMass scalar with a unit using a double value.
77       * @param value the double value, expressed in the given unit
78       * @param unit unit for the resulting float value
79       */
80      public FloatFlowMass(final double value, final FlowMassUnit unit)
81      {
82          super((float) value, unit);
83      }
84  
85      @Override
86      public final FloatFlowMass instantiateRel(final float value, final FlowMassUnit unit)
87      {
88          return new FloatFlowMass(value, unit);
89      }
90  
91      /**
92       * Construct FloatFlowMass scalar based on an SI value.
93       * @param value the float value in SI units
94       * @return the new scalar with the SI value
95       */
96      public static final FloatFlowMass ofSI(final float value)
97      {
98          return new FloatFlowMass(value, FlowMassUnit.SI);
99      }
100 
101     /**
102      * Interpolate between two values. Note that the first value does not have to be smaller than the second.
103      * @param zero the value at a ratio of zero
104      * @param one the value at a ratio of one
105      * @param ratio the ratio between 0 and 1, inclusive
106      * @return a FloatFlowMass at the given ratio between 0 and 1
107      */
108     public static FloatFlowMass interpolate(final FloatFlowMass zero, final FloatFlowMass one, final float ratio)
109     {
110         Throw.when(ratio < 0.0 || ratio > 1.0, IllegalArgumentException.class,
111                 "ratio for interpolation should be between 0 and 1, but is %f", ratio);
112         return new FloatFlowMass(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
113                 zero.getDisplayUnit());
114     }
115 
116     /**
117      * Return the maximum value of two relative scalars.
118      * @param r1 the first scalar
119      * @param r2 the second scalar
120      * @return the maximum value of two relative scalars
121      */
122     public static FloatFlowMass max(final FloatFlowMass r1, final FloatFlowMass r2)
123     {
124         return r1.gt(r2) ? r1 : r2;
125     }
126 
127     /**
128      * Return the maximum value of more than two relative scalars.
129      * @param r1 the first scalar
130      * @param r2 the second scalar
131      * @param rn the other scalars
132      * @return the maximum value of more than two relative scalars
133      */
134     public static FloatFlowMass max(final FloatFlowMass r1, final FloatFlowMass r2, final FloatFlowMass... rn)
135     {
136         FloatFlowMass maxr = r1.gt(r2) ? r1 : r2;
137         for (FloatFlowMass r : rn)
138         {
139             if (r.gt(maxr))
140             {
141                 maxr = r;
142             }
143         }
144         return maxr;
145     }
146 
147     /**
148      * Return the minimum value of two relative scalars.
149      * @param r1 the first scalar
150      * @param r2 the second scalar
151      * @return the minimum value of two relative scalars
152      */
153     public static FloatFlowMass min(final FloatFlowMass r1, final FloatFlowMass r2)
154     {
155         return r1.lt(r2) ? r1 : r2;
156     }
157 
158     /**
159      * Return the minimum value of more than two relative scalars.
160      * @param r1 the first scalar
161      * @param r2 the second scalar
162      * @param rn the other scalars
163      * @return the minimum value of more than two relative scalars
164      */
165     public static FloatFlowMass min(final FloatFlowMass r1, final FloatFlowMass r2, final FloatFlowMass... rn)
166     {
167         FloatFlowMass minr = r1.lt(r2) ? r1 : r2;
168         for (FloatFlowMass r : rn)
169         {
170             if (r.lt(minr))
171             {
172                 minr = r;
173             }
174         }
175         return minr;
176     }
177 
178     /**
179      * Returns a FloatFlowMass representation of a textual representation of a value with a unit. The String representation that
180      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
181      * allowed, but not required, between the value and the unit.
182      * @param text the textual representation to parse into a FloatFlowMass
183      * @return the Scalar representation of the value in its unit
184      * @throws IllegalArgumentException when the text cannot be parsed
185      * @throws NullPointerException when the text argument is null
186      */
187     public static FloatFlowMass valueOf(final String text)
188     {
189         Throw.whenNull(text, "Error parsing FloatFlowMass: text to parse is null");
190         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatFlowMass: empty text to parse");
191         try
192         {
193             NumberParser numberParser = new NumberParser().lenient().trailing();
194             float f = numberParser.parseFloat(text);
195             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
196             FlowMassUnit unit = FlowMassUnit.BASE.getUnitByAbbreviation(unitString);
197             Throw.when(unit == null, IllegalArgumentException.class, "Unit %s not found for quantity FlowMass", unitString);
198             return new FloatFlowMass(f, unit);
199         }
200         catch (Exception exception)
201         {
202             throw new IllegalArgumentException(
203                     "Error parsing FloatFlowMass from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
204                     exception);
205         }
206     }
207 
208     /**
209      * Returns a FloatFlowMass based on a value and the textual representation of the unit, which can be localized.
210      * @param value the value to use
211      * @param unitString the textual representation of the unit
212      * @return the Scalar representation of the value in its unit
213      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
214      * @throws NullPointerException when the unitString argument is null
215      */
216     public static FloatFlowMass of(final float value, final String unitString)
217     {
218         Throw.whenNull(unitString, "Error parsing FloatFlowMass: unitString is null");
219         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatFlowMass: empty unitString");
220         FlowMassUnit unit = FlowMassUnit.BASE.getUnitByAbbreviation(unitString);
221         Throw.when(unit == null, IllegalArgumentException.class, "Error parsing FloatFlowMass with unit %s", unitString);
222         return new FloatFlowMass(value, unit);
223     }
224 
225     /**
226      * Calculate the division of FloatFlowMass and FloatFlowMass, which results in a FloatDimensionless scalar.
227      * @param v scalar
228      * @return scalar as a division of FloatFlowMass and FloatFlowMass
229      */
230     public final FloatDimensionless divide(final FloatFlowMass v)
231     {
232         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
233     }
234 
235     /**
236      * Calculate the multiplication of FloatFlowMass and FloatDuration, which results in a FloatMass scalar.
237      * @param v scalar
238      * @return scalar as a multiplication of FloatFlowMass and FloatDuration
239      */
240     public final FloatMass times(final FloatDuration v)
241     {
242         return new FloatMass(this.si * v.si, MassUnit.SI);
243     }
244 
245     /**
246      * Calculate the division of FloatFlowMass and FloatFrequency, which results in a FloatMass scalar.
247      * @param v scalar
248      * @return scalar as a division of FloatFlowMass and FloatFrequency
249      */
250     public final FloatMass divide(final FloatFrequency v)
251     {
252         return new FloatMass(this.si / v.si, MassUnit.SI);
253     }
254 
255     /**
256      * Calculate the division of FloatFlowMass and FloatMass, which results in a FloatFrequency scalar.
257      * @param v scalar
258      * @return scalar as a division of FloatFlowMass and FloatMass
259      */
260     public final FloatFrequency divide(final FloatMass v)
261     {
262         return new FloatFrequency(this.si / v.si, FrequencyUnit.SI);
263     }
264 
265     /**
266      * Calculate the multiplication of FloatFlowMass and FloatSpeed, which results in a FloatForce scalar.
267      * @param v scalar
268      * @return scalar as a multiplication of FloatFlowMass and FloatSpeed
269      */
270     public final FloatForce times(final FloatSpeed v)
271     {
272         return new FloatForce(this.si * v.si, ForceUnit.SI);
273     }
274 
275     /**
276      * Calculate the division of FloatFlowMass and FloatFlowVolume, which results in a FloatDensity scalar.
277      * @param v scalar
278      * @return scalar as a division of FloatFlowMass and FloatFlowVolume
279      */
280     public final FloatDensity divide(final FloatFlowVolume v)
281     {
282         return new FloatDensity(this.si / v.si, DensityUnit.SI);
283     }
284 
285     /**
286      * Calculate the division of FloatFlowMass and FloatDensity, which results in a FloatFlowVolume scalar.
287      * @param v scalar
288      * @return scalar as a division of FloatFlowMass and FloatDensity
289      */
290     public final FloatFlowVolume divide(final FloatDensity v)
291     {
292         return new FloatFlowVolume(this.si / v.si, FlowVolumeUnit.SI);
293     }
294 
295     /**
296      * Calculate the multiplication of FloatFlowMass and FloatLength, which results in a FloatMomentum scalar.
297      * @param v scalar
298      * @return scalar as a multiplication of FloatFlowMass and FloatLength
299      */
300     public final FloatMomentum times(final FloatLength v)
301     {
302         return new FloatMomentum(this.si * v.si, MomentumUnit.SI);
303     }
304 
305     @Override
306     public FloatSIScalar reciprocal()
307     {
308         return FloatSIScalar.divide(FloatDimensionless.ONE, this);
309     }
310 
311     /**
312      * Multiply two scalars that result in a scalar of type FloatFlowMass.
313      * @param scalar1 the first scalar
314      * @param scalar2 the second scalar
315      * @return the multiplication of both scalars as an instance of FloatFlowMass
316      */
317     public static FloatFlowMass multiply(final FloatScalarRel<?, ?> scalar1, final FloatScalarRel<?, ?> scalar2)
318     {
319         Throw.whenNull(scalar1, "scalar1 cannot be null");
320         Throw.whenNull(scalar2, "scalar2 cannot be null");
321         Throw.when(!scalar1.getDisplayUnit().getQuantity().getSiDimensions()
322                 .plus(scalar2.getDisplayUnit().getQuantity().getSiDimensions()).equals(FlowMassUnit.BASE.getSiDimensions()),
323                 IllegalArgumentException.class, "Multiplying %s by %s does not result in instance of type FloatFlowMass",
324                 scalar1.toDisplayString(), scalar2.toDisplayString());
325         return new FloatFlowMass(scalar1.si * scalar2.si, FlowMassUnit.SI);
326     }
327 
328     /**
329      * Divide two scalars that result in a scalar of type FloatFlowMass.
330      * @param scalar1 the first scalar
331      * @param scalar2 the second scalar
332      * @return the division of scalar1 by scalar2 as an instance of FloatFlowMass
333      */
334     public static FloatFlowMass divide(final FloatScalarRel<?, ?> scalar1, final FloatScalarRel<?, ?> scalar2)
335     {
336         Throw.whenNull(scalar1, "scalar1 cannot be null");
337         Throw.whenNull(scalar2, "scalar2 cannot be null");
338         Throw.when(!scalar1.getDisplayUnit().getQuantity().getSiDimensions()
339                 .minus(scalar2.getDisplayUnit().getQuantity().getSiDimensions()).equals(FlowMassUnit.BASE.getSiDimensions()),
340                 IllegalArgumentException.class, "Dividing %s by %s does not result in an instance of type FloatFlowMass",
341                 scalar1.toDisplayString(), scalar2.toDisplayString());
342         return new FloatFlowMass(scalar1.si / scalar2.si, FlowMassUnit.SI);
343     }
344 
345 }