View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AccelerationUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.ForceUnit;
8   import org.djunits.unit.FrequencyUnit;
9   import org.djunits.unit.PowerUnit;
10  import org.djunits.unit.SpeedUnit;
11  import org.djunits.value.vfloat.scalar.base.FloatScalar;
12  import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
13  import org.djutils.base.NumberParser;
14  import org.djutils.exceptions.Throw;
15  
16  import jakarta.annotation.Generated;
17  
18  /**
19   * Easy access methods for the FloatAcceleration FloatScalar, which is relative by definition.
20   * <p>
21   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
22   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
23   * </p>
24   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
25   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
26   */
27  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
28  public class FloatAcceleration extends FloatScalarRel<AccelerationUnit, FloatAcceleration>
29  {
30      /** */
31      private static final long serialVersionUID = 20150901L;
32  
33      /** Constant with value zero. */
34      public static final FloatAcceleration ZERO = new FloatAcceleration(0.0f, AccelerationUnit.SI);
35  
36      /** Constant with value one. */
37      public static final FloatAcceleration ONE = new FloatAcceleration(1.0f, AccelerationUnit.SI);
38  
39      /** Constant with value NaN. */
40      @SuppressWarnings("checkstyle:constantname")
41      public static final FloatAcceleration NaN = new FloatAcceleration(Float.NaN, AccelerationUnit.SI);
42  
43      /** Constant with value POSITIVE_INFINITY. */
44      public static final FloatAcceleration POSITIVE_INFINITY =
45              new FloatAcceleration(Float.POSITIVE_INFINITY, AccelerationUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final FloatAcceleration NEGATIVE_INFINITY =
49              new FloatAcceleration(Float.NEGATIVE_INFINITY, AccelerationUnit.SI);
50  
51      /** Constant with value MAX_VALUE. */
52      public static final FloatAcceleration POS_MAXVALUE = new FloatAcceleration(Float.MAX_VALUE, AccelerationUnit.SI);
53  
54      /** Constant with value -MAX_VALUE. */
55      public static final FloatAcceleration NEG_MAXVALUE = new FloatAcceleration(-Float.MAX_VALUE, AccelerationUnit.SI);
56  
57      /**
58       * Construct FloatAcceleration scalar.
59       * @param value float; the float value
60       * @param unit unit for the float value
61       */
62      public FloatAcceleration(final float value, final AccelerationUnit unit)
63      {
64          super(value, unit);
65      }
66  
67      /**
68       * Construct FloatAcceleration scalar.
69       * @param value Scalar from which to construct this instance
70       */
71      public FloatAcceleration(final FloatAcceleration value)
72      {
73          super(value);
74      }
75  
76      /**
77       * Construct FloatAcceleration scalar using a double value.
78       * @param value double; the double value
79       * @param unit unit for the resulting float value
80       */
81      public FloatAcceleration(final double value, final AccelerationUnit unit)
82      {
83          super((float) value, unit);
84      }
85  
86      @Override
87      public final FloatAcceleration instantiateRel(final float value, final AccelerationUnit unit)
88      {
89          return new FloatAcceleration(value, unit);
90      }
91  
92      /**
93       * Construct FloatAcceleration scalar.
94       * @param value float; the float value in SI units
95       * @return the new scalar with the SI value
96       */
97      public static final FloatAcceleration instantiateSI(final float value)
98      {
99          return new FloatAcceleration(value, AccelerationUnit.SI);
100     }
101 
102     /**
103      * Interpolate between two values.
104      * @param zero the low value
105      * @param one the high value
106      * @param ratio double; the ratio between 0 and 1, inclusive
107      * @return a Scalar at the ratio between
108      */
109     public static FloatAcceleration interpolate(final FloatAcceleration zero, final FloatAcceleration one, final float ratio)
110     {
111         return new FloatAcceleration(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
112                 zero.getDisplayUnit());
113     }
114 
115     /**
116      * Return the maximum value of two relative scalars.
117      * @param r1 the first scalar
118      * @param r2 the second scalar
119      * @return the maximum value of two relative scalars
120      */
121     public static FloatAcceleration max(final FloatAcceleration r1, final FloatAcceleration r2)
122     {
123         return r1.gt(r2) ? r1 : r2;
124     }
125 
126     /**
127      * Return the maximum value of more than two relative scalars.
128      * @param r1 the first scalar
129      * @param r2 the second scalar
130      * @param rn the other scalars
131      * @return the maximum value of more than two relative scalars
132      */
133     public static FloatAcceleration max(final FloatAcceleration r1, final FloatAcceleration r2, final FloatAcceleration... rn)
134     {
135         FloatAcceleration maxr = r1.gt(r2) ? r1 : r2;
136         for (FloatAcceleration r : rn)
137         {
138             if (r.gt(maxr))
139             {
140                 maxr = r;
141             }
142         }
143         return maxr;
144     }
145 
146     /**
147      * Return the minimum value of two relative scalars.
148      * @param r1 the first scalar
149      * @param r2 the second scalar
150      * @return the minimum value of two relative scalars
151      */
152     public static FloatAcceleration min(final FloatAcceleration r1, final FloatAcceleration r2)
153     {
154         return r1.lt(r2) ? r1 : r2;
155     }
156 
157     /**
158      * Return the minimum value of more than two relative scalars.
159      * @param r1 the first scalar
160      * @param r2 the second scalar
161      * @param rn the other scalars
162      * @return the minimum value of more than two relative scalars
163      */
164     public static FloatAcceleration min(final FloatAcceleration r1, final FloatAcceleration r2, final FloatAcceleration... rn)
165     {
166         FloatAcceleration minr = r1.lt(r2) ? r1 : r2;
167         for (FloatAcceleration r : rn)
168         {
169             if (r.lt(minr))
170             {
171                 minr = r;
172             }
173         }
174         return minr;
175     }
176 
177     /**
178      * Returns a FloatAcceleration representation of a textual representation of a value with a unit. The String representation
179      * that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
180      * are allowed, but not required, between the value and the unit.
181      * @param text String; the textual representation to parse into a FloatAcceleration
182      * @return FloatAcceleration; the Scalar representation of the value in its unit
183      * @throws IllegalArgumentException when the text cannot be parsed
184      * @throws NullPointerException when the text argument is null
185      */
186     public static FloatAcceleration valueOf(final String text)
187     {
188         Throw.whenNull(text, "Error parsing FloatAcceleration: text to parse is null");
189         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatAcceleration: empty text to parse");
190         try
191         {
192             NumberParser numberParser = new NumberParser().lenient().trailing();
193             float f = numberParser.parseFloat(text);
194             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
195             AccelerationUnit unit = AccelerationUnit.BASE.getUnitByAbbreviation(unitString);
196             if (unit == null)
197                 throw new IllegalArgumentException("Unit " + unitString + " not found");
198             return new FloatAcceleration(f, unit);
199         }
200         catch (Exception exception)
201         {
202             throw new IllegalArgumentException("Error parsing FloatAcceleration from " + text + " using Locale "
203                     + Locale.getDefault(Locale.Category.FORMAT), exception);
204         }
205     }
206 
207     /**
208      * Returns a FloatAcceleration based on a value and the textual representation of the unit, which can be localized.
209      * @param value double; the value to use
210      * @param unitString String; the textual representation of the unit
211      * @return FloatAcceleration; the Scalar representation of the value in its unit
212      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
213      * @throws NullPointerException when the unitString argument is null
214      */
215     public static FloatAcceleration of(final float value, final String unitString)
216     {
217         Throw.whenNull(unitString, "Error parsing FloatAcceleration: unitString is null");
218         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
219                 "Error parsing FloatAcceleration: empty unitString");
220         AccelerationUnit unit = AccelerationUnit.BASE.getUnitByAbbreviation(unitString);
221         if (unit != null)
222         {
223             return new FloatAcceleration(value, unit);
224         }
225         throw new IllegalArgumentException("Error parsing FloatAcceleration with unit " + unitString);
226     }
227 
228     /**
229      * Calculate the division of FloatAcceleration and FloatAcceleration, which results in a FloatDimensionless scalar.
230      * @param v FloatAcceleration; scalar
231      * @return FloatDimensionless; scalar as a division of FloatAcceleration and FloatAcceleration
232      */
233     public final FloatDimensionless divide(final FloatAcceleration v)
234     {
235         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
236     }
237 
238     /**
239      * Calculate the multiplication of FloatAcceleration and FloatMass, which results in a FloatForce scalar.
240      * @param v FloatAcceleration; scalar
241      * @return FloatForce; scalar as a multiplication of FloatAcceleration and FloatMass
242      */
243     public final FloatForce times(final FloatMass v)
244     {
245         return new FloatForce(this.si * v.si, ForceUnit.SI);
246     }
247 
248     /**
249      * Calculate the multiplication of FloatAcceleration and FloatDuration, which results in a FloatSpeed scalar.
250      * @param v FloatAcceleration; scalar
251      * @return FloatSpeed; scalar as a multiplication of FloatAcceleration and FloatDuration
252      */
253     public final FloatSpeed times(final FloatDuration v)
254     {
255         return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
256     }
257 
258     /**
259      * Calculate the division of FloatAcceleration and FloatFrequency, which results in a FloatSpeed scalar.
260      * @param v FloatAcceleration; scalar
261      * @return FloatSpeed; scalar as a division of FloatAcceleration and FloatFrequency
262      */
263     public final FloatSpeed divide(final FloatFrequency v)
264     {
265         return new FloatSpeed(this.si / v.si, SpeedUnit.SI);
266     }
267 
268     /**
269      * Calculate the division of FloatAcceleration and FloatSpeed, which results in a FloatFrequency scalar.
270      * @param v FloatAcceleration; scalar
271      * @return FloatFrequency; scalar as a division of FloatAcceleration and FloatSpeed
272      */
273     public final FloatFrequency divide(final FloatSpeed v)
274     {
275         return new FloatFrequency(this.si / v.si, FrequencyUnit.SI);
276     }
277 
278     /**
279      * Calculate the multiplication of FloatAcceleration and FloatMomentum, which results in a FloatPower scalar.
280      * @param v FloatAcceleration; scalar
281      * @return FloatPower; scalar as a multiplication of FloatAcceleration and FloatMomentum
282      */
283     public final FloatPower times(final FloatMomentum v)
284     {
285         return new FloatPower(this.si * v.si, PowerUnit.SI);
286     }
287 
288     @Override
289     public FloatSIScalar reciprocal()
290     {
291         return FloatScalar.divide(FloatDimensionless.ONE, this);
292     }
293 
294 }