View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.DurationUnit;
8   import org.djunits.unit.EnergyUnit;
9   import org.djunits.unit.FlowVolumeUnit;
10  import org.djunits.unit.LengthUnit;
11  import org.djunits.unit.MassUnit;
12  import org.djunits.unit.VolumeUnit;
13  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
14  import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
15  import org.djutils.base.NumberParser;
16  import org.djutils.exceptions.Throw;
17  
18  import jakarta.annotation.Generated;
19  
20  /**
21   * Easy access methods for the Volume DoubleScalar, which is relative by definition.
22   * <p>
23   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
24   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
25   * </p>
26   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
27   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
28   */
29  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
30  public class Volume extends DoubleScalarRel<VolumeUnit, Volume>
31  {
32      /** */
33      private static final long serialVersionUID = 20150905L;
34  
35      /** Constant with value zero. */
36      public static final Volume ZERO = new Volume(0.0, VolumeUnit.SI);
37  
38      /** Constant with value one. */
39      public static final Volume ONE = new Volume(1.0, VolumeUnit.SI);
40  
41      /** Constant with value NaN. */
42      @SuppressWarnings("checkstyle:constantname")
43      public static final Volume NaN = new Volume(Double.NaN, VolumeUnit.SI);
44  
45      /** Constant with value POSITIVE_INFINITY. */
46      public static final Volume POSITIVE_INFINITY = new Volume(Double.POSITIVE_INFINITY, VolumeUnit.SI);
47  
48      /** Constant with value NEGATIVE_INFINITY. */
49      public static final Volume NEGATIVE_INFINITY = new Volume(Double.NEGATIVE_INFINITY, VolumeUnit.SI);
50  
51      /** Constant with value MAX_VALUE. */
52      public static final Volume POS_MAXVALUE = new Volume(Double.MAX_VALUE, VolumeUnit.SI);
53  
54      /** Constant with value -MAX_VALUE. */
55      public static final Volume NEG_MAXVALUE = new Volume(-Double.MAX_VALUE, VolumeUnit.SI);
56  
57      /**
58       * Construct Volume scalar.
59       * @param value double; the double value
60       * @param unit VolumeUnit; unit for the double value
61       */
62      public Volume(final double value, final VolumeUnit unit)
63      {
64          super(value, unit);
65      }
66  
67      /**
68       * Construct Volume scalar.
69       * @param value Volume; Scalar from which to construct this instance
70       */
71      public Volume(final Volume value)
72      {
73          super(value);
74      }
75  
76      @Override
77      public final Volume instantiateRel(final double value, final VolumeUnit unit)
78      {
79          return new Volume(value, unit);
80      }
81  
82      /**
83       * Construct Volume scalar.
84       * @param value double; the double value in SI units
85       * @return Volume; the new scalar with the SI value
86       */
87      public static final Volume instantiateSI(final double value)
88      {
89          return new Volume(value, VolumeUnit.SI);
90      }
91  
92      /**
93       * Interpolate between two values.
94       * @param zero Volume; the low value
95       * @param one Volume; the high value
96       * @param ratio double; the ratio between 0 and 1, inclusive
97       * @return Volume; a Scalar at the ratio between
98       */
99      public static Volume interpolate(final Volume zero, final Volume one, final double ratio)
100     {
101         return new Volume(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio, zero.getDisplayUnit());
102     }
103 
104     /**
105      * Return the maximum value of two relative scalars.
106      * @param r1 Volume; the first scalar
107      * @param r2 Volume; the second scalar
108      * @return Volume; the maximum value of two relative scalars
109      */
110     public static Volume max(final Volume r1, final Volume r2)
111     {
112         return r1.gt(r2) ? r1 : r2;
113     }
114 
115     /**
116      * Return the maximum value of more than two relative scalars.
117      * @param r1 Volume; the first scalar
118      * @param r2 Volume; the second scalar
119      * @param rn Volume...; the other scalars
120      * @return Volume; the maximum value of more than two relative scalars
121      */
122     public static Volume max(final Volume r1, final Volume r2, final Volume... rn)
123     {
124         Volume maxr = r1.gt(r2) ? r1 : r2;
125         for (Volume r : rn)
126         {
127             if (r.gt(maxr))
128             {
129                 maxr = r;
130             }
131         }
132         return maxr;
133     }
134 
135     /**
136      * Return the minimum value of two relative scalars.
137      * @param r1 Volume; the first scalar
138      * @param r2 Volume; the second scalar
139      * @return Volume; the minimum value of two relative scalars
140      */
141     public static Volume min(final Volume r1, final Volume r2)
142     {
143         return r1.lt(r2) ? r1 : r2;
144     }
145 
146     /**
147      * Return the minimum value of more than two relative scalars.
148      * @param r1 Volume; the first scalar
149      * @param r2 Volume; the second scalar
150      * @param rn Volume...; the other scalars
151      * @return Volume; the minimum value of more than two relative scalars
152      */
153     public static Volume min(final Volume r1, final Volume r2, final Volume... rn)
154     {
155         Volume minr = r1.lt(r2) ? r1 : r2;
156         for (Volume r : rn)
157         {
158             if (r.lt(minr))
159             {
160                 minr = r;
161             }
162         }
163         return minr;
164     }
165 
166     /**
167      * Returns a Volume representation of a textual representation of a value with a unit. The String representation that can be
168      * parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are allowed,
169      * but not required, between the value and the unit.
170      * @param text String; the textual representation to parse into a Volume
171      * @return Volume; the Scalar representation of the value in its unit
172      * @throws IllegalArgumentException when the text cannot be parsed
173      * @throws NullPointerException when the text argument is null
174      */
175     public static Volume valueOf(final String text)
176     {
177         Throw.whenNull(text, "Error parsing Volume: text to parse is null");
178         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Volume: empty text to parse");
179         try
180         {
181             NumberParser numberParser = new NumberParser().lenient().trailing();
182             double d = numberParser.parseDouble(text);
183             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
184             VolumeUnit unit = VolumeUnit.BASE.getUnitByAbbreviation(unitString);
185             if (unit == null)
186                 throw new IllegalArgumentException("Unit " + unitString + " not found");
187             return new Volume(d, unit);
188         }
189         catch (Exception exception)
190         {
191             throw new IllegalArgumentException(
192                     "Error parsing Volume from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
193                     exception);
194         }
195     }
196 
197     /**
198      * Returns a Volume based on a value and the textual representation of the unit, which can be localized.
199      * @param value double; the value to use
200      * @param unitString String; the textual representation of the unit
201      * @return Volume; the Scalar representation of the value in its unit
202      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
203      * @throws NullPointerException when the unitString argument is null
204      */
205     public static Volume of(final double value, final String unitString)
206     {
207         Throw.whenNull(unitString, "Error parsing Volume: unitString is null");
208         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Volume: empty unitString");
209         VolumeUnit unit = VolumeUnit.BASE.getUnitByAbbreviation(unitString);
210         if (unit != null)
211         {
212             return new Volume(value, unit);
213         }
214         throw new IllegalArgumentException("Error parsing Volume with unit " + unitString);
215     }
216 
217     /**
218      * Calculate the division of Volume and Volume, which results in a Dimensionless scalar.
219      * @param v Volume; scalar
220      * @return Dimensionless; scalar as a division of Volume and Volume
221      */
222     public final Dimensionless divide(final Volume v)
223     {
224         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
225     }
226 
227     /**
228      * Calculate the multiplication of Volume and Density, which results in a Mass scalar.
229      * @param v Volume; scalar
230      * @return Mass; scalar as a multiplication of Volume and Density
231      */
232     public final Mass times(final Density v)
233     {
234         return new Mass(this.si * v.si, MassUnit.SI);
235     }
236 
237     /**
238      * Calculate the multiplication of Volume and Pressure, which results in a Energy scalar.
239      * @param v Volume; scalar
240      * @return Energy; scalar as a multiplication of Volume and Pressure
241      */
242     public final Energy times(final Pressure v)
243     {
244         return new Energy(this.si * v.si, EnergyUnit.SI);
245     }
246 
247     /**
248      * Calculate the division of Volume and Length, which results in a Area scalar.
249      * @param v Volume; scalar
250      * @return Area; scalar as a division of Volume and Length
251      */
252     public final Area divide(final Length v)
253     {
254         return new Area(this.si / v.si, AreaUnit.SI);
255     }
256 
257     /**
258      * Calculate the division of Volume and Area, which results in a Length scalar.
259      * @param v Volume; scalar
260      * @return Length; scalar as a division of Volume and Area
261      */
262     public final Length divide(final Area v)
263     {
264         return new Length(this.si / v.si, LengthUnit.SI);
265     }
266 
267     /**
268      * Calculate the multiplication of Volume and LinearDensity, which results in a Area scalar.
269      * @param v Volume; scalar
270      * @return Area; scalar as a multiplication of Volume and LinearDensity
271      */
272     public final Area times(final LinearDensity v)
273     {
274         return new Area(this.si * v.si, AreaUnit.SI);
275     }
276 
277     /**
278      * Calculate the division of Volume and Duration, which results in a FlowVolume scalar.
279      * @param v Volume; scalar
280      * @return FlowVolume; scalar as a division of Volume and Duration
281      */
282     public final FlowVolume divide(final Duration v)
283     {
284         return new FlowVolume(this.si / v.si, FlowVolumeUnit.SI);
285     }
286 
287     /**
288      * Calculate the division of Volume and FlowVolume, which results in a Duration scalar.
289      * @param v Volume; scalar
290      * @return Duration; scalar as a division of Volume and FlowVolume
291      */
292     public final Duration divide(final FlowVolume v)
293     {
294         return new Duration(this.si / v.si, DurationUnit.SI);
295     }
296 
297     @Override
298     public SIScalar reciprocal()
299     {
300         return DoubleScalar.divide(Dimensionless.ONE, this);
301     }
302 
303 }