View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DensityUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.DurationUnit;
8   import org.djunits.unit.FlowMassUnit;
9   import org.djunits.unit.ForceUnit;
10  import org.djunits.unit.MassUnit;
11  import org.djunits.unit.MomentumUnit;
12  import org.djunits.unit.VolumeUnit;
13  import org.djunits.unit.si.SIPrefixes;
14  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
15  import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
16  import org.djutils.base.NumberParser;
17  import org.djutils.exceptions.Throw;
18  
19  import jakarta.annotation.Generated;
20  
21  /**
22   * Easy access methods for the Mass DoubleScalar, which is relative by definition.
23   * <p>
24   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
25   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
26   * </p>
27   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
28   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
29   */
30  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
31  public class Mass extends DoubleScalarRel<MassUnit, Mass>
32  {
33      /** */
34      private static final long serialVersionUID = 20150905L;
35  
36      /** Constant with value zero. */
37      public static final Mass ZERO = new Mass(0.0, MassUnit.SI);
38  
39      /** Constant with value one. */
40      public static final Mass ONE = new Mass(1.0, MassUnit.SI);
41  
42      /** Constant with value NaN. */
43      @SuppressWarnings("checkstyle:constantname")
44      public static final Mass NaN = new Mass(Double.NaN, MassUnit.SI);
45  
46      /** Constant with value POSITIVE_INFINITY. */
47      public static final Mass POSITIVE_INFINITY = new Mass(Double.POSITIVE_INFINITY, MassUnit.SI);
48  
49      /** Constant with value NEGATIVE_INFINITY. */
50      public static final Mass NEGATIVE_INFINITY = new Mass(Double.NEGATIVE_INFINITY, MassUnit.SI);
51  
52      /** Constant with value MAX_VALUE. */
53      public static final Mass POS_MAXVALUE = new Mass(Double.MAX_VALUE, MassUnit.SI);
54  
55      /** Constant with value -MAX_VALUE. */
56      public static final Mass NEG_MAXVALUE = new Mass(-Double.MAX_VALUE, MassUnit.SI);
57  
58      /**
59       * Construct Mass scalar.
60       * @param value double; the double value
61       * @param unit MassUnit; unit for the double value
62       */
63      public Mass(final double value, final MassUnit unit)
64      {
65          super(value, unit);
66      }
67  
68      /**
69       * Construct Mass scalar.
70       * @param value Mass; Scalar from which to construct this instance
71       */
72      public Mass(final Mass value)
73      {
74          super(value);
75      }
76  
77      @Override
78      public final Mass instantiateRel(final double value, final MassUnit unit)
79      {
80          return new Mass(value, unit);
81      }
82  
83      /**
84       * Construct Mass scalar.
85       * @param value double; the double value in SI units
86       * @return Mass; the new scalar with the SI value
87       */
88      public static final Mass instantiateSI(final double value)
89      {
90          return new Mass(value, MassUnit.SI);
91      }
92  
93      /**
94       * Interpolate between two values.
95       * @param zero Mass; the low value
96       * @param one Mass; the high value
97       * @param ratio double; the ratio between 0 and 1, inclusive
98       * @return Mass; a Scalar at the ratio between
99       */
100     public static Mass interpolate(final Mass zero, final Mass one, final double ratio)
101     {
102         return new Mass(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio, zero.getDisplayUnit());
103     }
104 
105     /**
106      * Return the maximum value of two relative scalars.
107      * @param r1 Mass; the first scalar
108      * @param r2 Mass; the second scalar
109      * @return Mass; the maximum value of two relative scalars
110      */
111     public static Mass max(final Mass r1, final Mass r2)
112     {
113         return r1.gt(r2) ? r1 : r2;
114     }
115 
116     /**
117      * Return the maximum value of more than two relative scalars.
118      * @param r1 Mass; the first scalar
119      * @param r2 Mass; the second scalar
120      * @param rn Mass...; the other scalars
121      * @return Mass; the maximum value of more than two relative scalars
122      */
123     public static Mass max(final Mass r1, final Mass r2, final Mass... rn)
124     {
125         Mass maxr = r1.gt(r2) ? r1 : r2;
126         for (Mass r : rn)
127         {
128             if (r.gt(maxr))
129             {
130                 maxr = r;
131             }
132         }
133         return maxr;
134     }
135 
136     /**
137      * Return the minimum value of two relative scalars.
138      * @param r1 Mass; the first scalar
139      * @param r2 Mass; the second scalar
140      * @return Mass; the minimum value of two relative scalars
141      */
142     public static Mass min(final Mass r1, final Mass r2)
143     {
144         return r1.lt(r2) ? r1 : r2;
145     }
146 
147     /**
148      * Return the minimum value of more than two relative scalars.
149      * @param r1 Mass; the first scalar
150      * @param r2 Mass; the second scalar
151      * @param rn Mass...; the other scalars
152      * @return Mass; the minimum value of more than two relative scalars
153      */
154     public static Mass min(final Mass r1, final Mass r2, final Mass... rn)
155     {
156         Mass minr = r1.lt(r2) ? r1 : r2;
157         for (Mass r : rn)
158         {
159             if (r.lt(minr))
160             {
161                 minr = r;
162             }
163         }
164         return minr;
165     }
166 
167     /**
168      * Returns a Mass representation of a textual representation of a value with a unit. The String representation that can be
169      * parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are allowed,
170      * but not required, between the value and the unit.
171      * @param text String; the textual representation to parse into a Mass
172      * @return Mass; the Scalar representation of the value in its unit
173      * @throws IllegalArgumentException when the text cannot be parsed
174      * @throws NullPointerException when the text argument is null
175      */
176     public static Mass valueOf(final String text)
177     {
178         Throw.whenNull(text, "Error parsing Mass: text to parse is null");
179         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Mass: empty text to parse");
180         try
181         {
182             NumberParser numberParser = new NumberParser().lenient().trailing();
183             double d = numberParser.parseDouble(text);
184             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
185             MassUnit unit = MassUnit.BASE.getUnitByAbbreviation(unitString);
186             if (unit == null)
187                 throw new IllegalArgumentException("Unit " + unitString + " not found");
188             return new Mass(d, unit);
189         }
190         catch (Exception exception)
191         {
192             throw new IllegalArgumentException(
193                     "Error parsing Mass from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
194                     exception);
195         }
196     }
197 
198     /**
199      * Returns a Mass based on a value and the textual representation of the unit, which can be localized.
200      * @param value double; the value to use
201      * @param unitString String; the textual representation of the unit
202      * @return Mass; the Scalar representation of the value in its unit
203      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
204      * @throws NullPointerException when the unitString argument is null
205      */
206     public static Mass of(final double value, final String unitString)
207     {
208         Throw.whenNull(unitString, "Error parsing Mass: unitString is null");
209         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Mass: empty unitString");
210         MassUnit unit = MassUnit.BASE.getUnitByAbbreviation(unitString);
211         if (unit != null)
212         {
213             return new Mass(value, unit);
214         }
215         throw new IllegalArgumentException("Error parsing Mass with unit " + unitString);
216     }
217 
218     @Override
219     public String toStringSIPrefixed(final int smallestPower, final int biggestPower)
220     {
221         if (!Double.isFinite(this.si))
222         {
223             return toString(getDisplayUnit().getStandardUnit());
224         }
225         // PK: I can't think of an easier way to figure out what the exponent will be; rounding of the mantissa to the available
226         // width makes this hard; This feels like an expensive way.
227         String check = String.format(this.si >= 0 ? "%10.8E" : "%10.7E", this.si);
228         int exponent = Integer.parseInt(check.substring(check.indexOf("E") + 1));
229         if (exponent < -27 || exponent < smallestPower || exponent > 21 + 2 || exponent > biggestPower)
230         {
231             // Out of SI prefix range; do not scale.
232             return String.format(this.si >= 0 ? "%10.4E" : "%10.3E", this.si) + " "
233                     + getDisplayUnit().getStandardUnit().getId();
234         }
235         Integer roundedExponent = (int) Math.ceil((exponent - 2.0) / 3) * 3 + 3;
236         // System.out.print(String.format("exponent=%d; roundedExponent=%d ", exponent, roundedExponent));
237         String key = SIPrefixes.FACTORS.get(roundedExponent).getDefaultTextualPrefix() + "g";
238         MassUnit displayUnit = getDisplayUnit().getQuantity().getUnitByAbbreviation(key);
239         return toString(displayUnit);
240     }
241 
242     /**
243      * Calculate the division of Mass and Mass, which results in a Dimensionless scalar.
244      * @param v Mass; scalar
245      * @return Dimensionless; scalar as a division of Mass and Mass
246      */
247     public final Dimensionless divide(final Mass v)
248     {
249         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
250     }
251 
252     /**
253      * Calculate the division of Mass and FlowMass, which results in a Duration scalar.
254      * @param v Mass; scalar
255      * @return Duration; scalar as a division of Mass and FlowMass
256      */
257     public final Duration divide(final FlowMass v)
258     {
259         return new Duration(this.si / v.si, DurationUnit.SI);
260     }
261 
262     /**
263      * Calculate the division of Mass and Duration, which results in a FlowMass scalar.
264      * @param v Mass; scalar
265      * @return FlowMass; scalar as a division of Mass and Duration
266      */
267     public final FlowMass divide(final Duration v)
268     {
269         return new FlowMass(this.si / v.si, FlowMassUnit.SI);
270     }
271 
272     /**
273      * Calculate the multiplication of Mass and Acceleration, which results in a Force scalar.
274      * @param v Mass; scalar
275      * @return Force; scalar as a multiplication of Mass and Acceleration
276      */
277     public final Force times(final Acceleration v)
278     {
279         return new Force(this.si * v.si, ForceUnit.SI);
280     }
281 
282     /**
283      * Calculate the multiplication of Mass and Frequency, which results in a FlowMass scalar.
284      * @param v Mass; scalar
285      * @return FlowMass; scalar as a multiplication of Mass and Frequency
286      */
287     public final FlowMass times(final Frequency v)
288     {
289         return new FlowMass(this.si * v.si, FlowMassUnit.SI);
290     }
291 
292     /**
293      * Calculate the division of Mass and Density, which results in a Volume scalar.
294      * @param v Mass; scalar
295      * @return Volume; scalar as a division of Mass and Density
296      */
297     public final Volume divide(final Density v)
298     {
299         return new Volume(this.si / v.si, VolumeUnit.SI);
300     }
301 
302     /**
303      * Calculate the division of Mass and Volume, which results in a Density scalar.
304      * @param v Mass; scalar
305      * @return Density; scalar as a division of Mass and Volume
306      */
307     public final Density divide(final Volume v)
308     {
309         return new Density(this.si / v.si, DensityUnit.SI);
310     }
311 
312     /**
313      * Calculate the multiplication of Mass and Speed, which results in a Momentum scalar.
314      * @param v Mass; scalar
315      * @return Momentum; scalar as a multiplication of Mass and Speed
316      */
317     public final Momentum times(final Speed v)
318     {
319         return new Momentum(this.si * v.si, MomentumUnit.SI);
320     }
321 
322     @Override
323     public SIScalar reciprocal()
324     {
325         return DoubleScalar.divide(Dimensionless.ONE, this);
326     }
327 
328 }