View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.FlowMassUnit;
8   import org.djunits.unit.FlowVolumeUnit;
9   import org.djunits.unit.FrequencyUnit;
10  import org.djunits.unit.SpeedUnit;
11  import org.djunits.unit.VolumeUnit;
12  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
13  import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
14  import org.djutils.base.NumberParser;
15  import org.djutils.exceptions.Throw;
16  
17  import jakarta.annotation.Generated;
18  
19  /**
20   * Easy access methods for the FlowVolume DoubleScalar, which is relative by definition.
21   * <p>
22   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
23   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
24   * </p>
25   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
26   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
27   */
28  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
29  public class FlowVolume extends DoubleScalarRel<FlowVolumeUnit, FlowVolume>
30  {
31      /** */
32      private static final long serialVersionUID = 20150905L;
33  
34      /** Constant with value zero. */
35      public static final FlowVolume ZERO = new FlowVolume(0.0, FlowVolumeUnit.SI);
36  
37      /** Constant with value one. */
38      public static final FlowVolume ONE = new FlowVolume(1.0, FlowVolumeUnit.SI);
39  
40      /** Constant with value NaN. */
41      @SuppressWarnings("checkstyle:constantname")
42      public static final FlowVolume NaN = new FlowVolume(Double.NaN, FlowVolumeUnit.SI);
43  
44      /** Constant with value POSITIVE_INFINITY. */
45      public static final FlowVolume POSITIVE_INFINITY = new FlowVolume(Double.POSITIVE_INFINITY, FlowVolumeUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final FlowVolume NEGATIVE_INFINITY = new FlowVolume(Double.NEGATIVE_INFINITY, FlowVolumeUnit.SI);
49  
50      /** Constant with value MAX_VALUE. */
51      public static final FlowVolume POS_MAXVALUE = new FlowVolume(Double.MAX_VALUE, FlowVolumeUnit.SI);
52  
53      /** Constant with value -MAX_VALUE. */
54      public static final FlowVolume NEG_MAXVALUE = new FlowVolume(-Double.MAX_VALUE, FlowVolumeUnit.SI);
55  
56      /**
57       * Construct FlowVolume scalar.
58       * @param value double; the double value
59       * @param unit FlowVolumeUnit; unit for the double value
60       */
61      public FlowVolume(final double value, final FlowVolumeUnit unit)
62      {
63          super(value, unit);
64      }
65  
66      /**
67       * Construct FlowVolume scalar.
68       * @param value FlowVolume; Scalar from which to construct this instance
69       */
70      public FlowVolume(final FlowVolume value)
71      {
72          super(value);
73      }
74  
75      @Override
76      public final FlowVolume instantiateRel(final double value, final FlowVolumeUnit unit)
77      {
78          return new FlowVolume(value, unit);
79      }
80  
81      /**
82       * Construct FlowVolume scalar.
83       * @param value double; the double value in SI units
84       * @return FlowVolume; the new scalar with the SI value
85       */
86      public static final FlowVolume instantiateSI(final double value)
87      {
88          return new FlowVolume(value, FlowVolumeUnit.SI);
89      }
90  
91      /**
92       * Interpolate between two values.
93       * @param zero FlowVolume; the low value
94       * @param one FlowVolume; the high value
95       * @param ratio double; the ratio between 0 and 1, inclusive
96       * @return FlowVolume; a Scalar at the ratio between
97       */
98      public static FlowVolume interpolate(final FlowVolume zero, final FlowVolume one, final double ratio)
99      {
100         return new FlowVolume(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
101                 zero.getDisplayUnit());
102     }
103 
104     /**
105      * Return the maximum value of two relative scalars.
106      * @param r1 FlowVolume; the first scalar
107      * @param r2 FlowVolume; the second scalar
108      * @return FlowVolume; the maximum value of two relative scalars
109      */
110     public static FlowVolume max(final FlowVolume r1, final FlowVolume r2)
111     {
112         return r1.gt(r2) ? r1 : r2;
113     }
114 
115     /**
116      * Return the maximum value of more than two relative scalars.
117      * @param r1 FlowVolume; the first scalar
118      * @param r2 FlowVolume; the second scalar
119      * @param rn FlowVolume...; the other scalars
120      * @return FlowVolume; the maximum value of more than two relative scalars
121      */
122     public static FlowVolume max(final FlowVolume r1, final FlowVolume r2, final FlowVolume... rn)
123     {
124         FlowVolume maxr = r1.gt(r2) ? r1 : r2;
125         for (FlowVolume r : rn)
126         {
127             if (r.gt(maxr))
128             {
129                 maxr = r;
130             }
131         }
132         return maxr;
133     }
134 
135     /**
136      * Return the minimum value of two relative scalars.
137      * @param r1 FlowVolume; the first scalar
138      * @param r2 FlowVolume; the second scalar
139      * @return FlowVolume; the minimum value of two relative scalars
140      */
141     public static FlowVolume min(final FlowVolume r1, final FlowVolume r2)
142     {
143         return r1.lt(r2) ? r1 : r2;
144     }
145 
146     /**
147      * Return the minimum value of more than two relative scalars.
148      * @param r1 FlowVolume; the first scalar
149      * @param r2 FlowVolume; the second scalar
150      * @param rn FlowVolume...; the other scalars
151      * @return FlowVolume; the minimum value of more than two relative scalars
152      */
153     public static FlowVolume min(final FlowVolume r1, final FlowVolume r2, final FlowVolume... rn)
154     {
155         FlowVolume minr = r1.lt(r2) ? r1 : r2;
156         for (FlowVolume r : rn)
157         {
158             if (r.lt(minr))
159             {
160                 minr = r;
161             }
162         }
163         return minr;
164     }
165 
166     /**
167      * Returns a FlowVolume representation of a textual representation of a value with a unit. The String representation that
168      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
169      * allowed, but not required, between the value and the unit.
170      * @param text String; the textual representation to parse into a FlowVolume
171      * @return FlowVolume; the Scalar representation of the value in its unit
172      * @throws IllegalArgumentException when the text cannot be parsed
173      * @throws NullPointerException when the text argument is null
174      */
175     public static FlowVolume valueOf(final String text)
176     {
177         Throw.whenNull(text, "Error parsing FlowVolume: text to parse is null");
178         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FlowVolume: empty text to parse");
179         try
180         {
181             NumberParser numberParser = new NumberParser().lenient().trailing();
182             double d = numberParser.parseDouble(text);
183             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
184             FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
185             if (unit == null)
186                 throw new IllegalArgumentException("Unit " + unitString + " not found");
187             return new FlowVolume(d, unit);
188         }
189         catch (Exception exception)
190         {
191             throw new IllegalArgumentException(
192                     "Error parsing FlowVolume from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
193                     exception);
194         }
195     }
196 
197     /**
198      * Returns a FlowVolume based on a value and the textual representation of the unit, which can be localized.
199      * @param value double; the value to use
200      * @param unitString String; the textual representation of the unit
201      * @return FlowVolume; the Scalar representation of the value in its unit
202      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
203      * @throws NullPointerException when the unitString argument is null
204      */
205     public static FlowVolume of(final double value, final String unitString)
206     {
207         Throw.whenNull(unitString, "Error parsing FlowVolume: unitString is null");
208         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FlowVolume: empty unitString");
209         FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
210         if (unit != null)
211         {
212             return new FlowVolume(value, unit);
213         }
214         throw new IllegalArgumentException("Error parsing FlowVolume with unit " + unitString);
215     }
216 
217     /**
218      * Calculate the division of FlowVolume and FlowVolume, which results in a Dimensionless scalar.
219      * @param v FlowVolume; scalar
220      * @return Dimensionless; scalar as a division of FlowVolume and FlowVolume
221      */
222     public final Dimensionless divide(final FlowVolume v)
223     {
224         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
225     }
226 
227     /**
228      * Calculate the multiplication of FlowVolume and Duration, which results in a Volume scalar.
229      * @param v FlowVolume; scalar
230      * @return Volume; scalar as a multiplication of FlowVolume and Duration
231      */
232     public final Volume times(final Duration v)
233     {
234         return new Volume(this.si * v.si, VolumeUnit.SI);
235     }
236 
237     /**
238      * Calculate the division of FlowVolume and Frequency, which results in a Volume scalar.
239      * @param v FlowVolume; scalar
240      * @return Volume; scalar as a division of FlowVolume and Frequency
241      */
242     public final Volume divide(final Frequency v)
243     {
244         return new Volume(this.si / v.si, VolumeUnit.SI);
245     }
246 
247     /**
248      * Calculate the division of FlowVolume and Volume, which results in a Frequency scalar.
249      * @param v FlowVolume; scalar
250      * @return Frequency; scalar as a division of FlowVolume and Volume
251      */
252     public final Frequency divide(final Volume v)
253     {
254         return new Frequency(this.si / v.si, FrequencyUnit.SI);
255     }
256 
257     /**
258      * Calculate the division of FlowVolume and Area, which results in a Speed scalar.
259      * @param v FlowVolume; scalar
260      * @return Speed; scalar as a division of FlowVolume and Area
261      */
262     public final Speed divide(final Area v)
263     {
264         return new Speed(this.si / v.si, SpeedUnit.SI);
265     }
266 
267     /**
268      * Calculate the division of FlowVolume and Speed, which results in a Area scalar.
269      * @param v FlowVolume; scalar
270      * @return Area; scalar as a division of FlowVolume and Speed
271      */
272     public final Area divide(final Speed v)
273     {
274         return new Area(this.si / v.si, AreaUnit.SI);
275     }
276 
277     /**
278      * Calculate the multiplication of FlowVolume and Density, which results in a FlowMass scalar.
279      * @param v FlowVolume; scalar
280      * @return FlowMass; scalar as a multiplication of FlowVolume and Density
281      */
282     public final FlowMass times(final Density v)
283     {
284         return new FlowMass(this.si * v.si, FlowMassUnit.SI);
285     }
286 
287     @Override
288     public SIScalar reciprocal()
289     {
290         return DoubleScalar.divide(Dimensionless.ONE, this);
291     }
292 
293 }