View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import org.djunits.unit.DimensionlessUnit;
4   import org.djunits.unit.ElectricalChargeUnit;
5   import org.djunits.unit.ElectricalCurrentUnit;
6   import org.djunits.unit.ElectricalPotentialUnit;
7   import org.djunits.unit.PowerUnit;
8   
9   /**
10   * Easy access methods for the ElectricalCurrent DoubleScalar, which is relative by definition. Instead of:
11   * 
12   * <pre>
13   * DoubleScalar.Rel&lt;ElectricalCurrentUnit&gt; value = new DoubleScalar.Rel&lt;ElectricalCurrentUnit&gt;(100.0, ElectricalCurrentUnit.SI);
14   * </pre>
15   * 
16   * we can now write:
17   * 
18   * <pre>
19   * ElectricalCurrent value = new ElectricalCurrent(100.0, ElectricalCurrentUnit.SI);
20   * </pre>
21   * 
22   * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
23   * used are compatible.
24   * <p>
25   * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
26   * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
27   * <p>
28   * $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
29   * initial version Sep 5, 2015 <br>
30   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
31   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
32   */
33  public class ElectricalCurrent extends AbstractDoubleScalarRel<ElectricalCurrentUnit, ElectricalCurrent>
34  {
35      /** */
36      private static final long serialVersionUID = 20150905L;
37  
38      /** constant with value zero. */
39      public static final ElectricalCurrent ZERO = new ElectricalCurrent(0.0, ElectricalCurrentUnit.SI);
40  
41      /** constant with value NaN. */
42      @SuppressWarnings("checkstyle:constantname")
43      public static final ElectricalCurrent NaN = new ElectricalCurrent(Double.NaN, ElectricalCurrentUnit.SI);
44  
45      /** constant with value POSITIVE_INFINITY. */
46      public static final ElectricalCurrent POSITIVE_INFINITY =
47              new ElectricalCurrent(Double.POSITIVE_INFINITY, ElectricalCurrentUnit.SI);
48  
49      /** constant with value NEGATIVE_INFINITY. */
50      public static final ElectricalCurrent NEGATIVE_INFINITY =
51              new ElectricalCurrent(Double.NEGATIVE_INFINITY, ElectricalCurrentUnit.SI);
52  
53      /** constant with value MAX_VALUE. */
54      public static final ElectricalCurrent POS_MAXVALUE = new ElectricalCurrent(Double.MAX_VALUE, ElectricalCurrentUnit.SI);
55  
56      /** constant with value -MAX_VALUE. */
57      public static final ElectricalCurrent NEG_MAXVALUE = new ElectricalCurrent(-Double.MAX_VALUE, ElectricalCurrentUnit.SI);
58  
59      /**
60       * Construct ElectricalCurrent scalar.
61       * @param value double value
62       * @param unit unit for the double value
63       */
64      public ElectricalCurrent(final double value, final ElectricalCurrentUnit unit)
65      {
66          super(value, unit);
67      }
68  
69      /**
70       * Construct ElectricalCurrent scalar.
71       * @param value Scalar from which to construct this instance
72       */
73      public ElectricalCurrent(final ElectricalCurrent value)
74      {
75          super(value);
76      }
77  
78      /** {@inheritDoc} */
79      @Override
80      public final ElectricalCurrent instantiateRel(final double value, final ElectricalCurrentUnit unit)
81      {
82          return new ElectricalCurrent(value, unit);
83      }
84  
85      /**
86       * Construct ElectricalCurrent scalar.
87       * @param value double value in SI units
88       * @return the new scalar with the SI value
89       */
90      public static final ElectricalCurrent createSI(final double value)
91      {
92          return new ElectricalCurrent(value, ElectricalCurrentUnit.SI);
93      }
94  
95      /**
96       * Interpolate between two values.
97       * @param zero the low value
98       * @param one the high value
99       * @param ratio the ratio between 0 and 1, inclusive
100      * @return a Scalar at the ratio between
101      */
102     public static ElectricalCurrent interpolate(final ElectricalCurrent zero, final ElectricalCurrent one, final double ratio)
103     {
104         return new ElectricalCurrent(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
105     }
106 
107     /**
108      * Return the maximum value of two relative scalars.
109      * @param r1 the first scalar
110      * @param r2 the second scalar
111      * @return the maximum value of two relative scalars
112      */
113     public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2)
114     {
115         return (r1.gt(r2)) ? r1 : r2;
116     }
117 
118     /**
119      * Return the maximum value of more than two relative scalars.
120      * @param r1 the first scalar
121      * @param r2 the second scalar
122      * @param rn the other scalars
123      * @return the maximum value of more than two relative scalars
124      */
125     public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
126     {
127         ElectricalCurrent maxr = (r1.gt(r2)) ? r1 : r2;
128         for (ElectricalCurrent r : rn)
129         {
130             if (r.gt(maxr))
131             {
132                 maxr = r;
133             }
134         }
135         return maxr;
136     }
137 
138     /**
139      * Return the minimum value of two relative scalars.
140      * @param r1 the first scalar
141      * @param r2 the second scalar
142      * @return the minimum value of two relative scalars
143      */
144     public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2)
145     {
146         return (r1.lt(r2)) ? r1 : r2;
147     }
148 
149     /**
150      * Return the minimum value of more than two relative scalars.
151      * @param r1 the first scalar
152      * @param r2 the second scalar
153      * @param rn the other scalars
154      * @return the minimum value of more than two relative scalars
155      */
156     public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
157     {
158         ElectricalCurrent minr = (r1.lt(r2)) ? r1 : r2;
159         for (ElectricalCurrent r : rn)
160         {
161             if (r.lt(minr))
162             {
163                 minr = r;
164             }
165         }
166         return minr;
167     }
168 
169     /**
170      * Calculate the division of ElectricalCurrent and ElectricalCurrent, which results in a Dimensionless scalar.
171      * @param v ElectricalCurrent scalar
172      * @return Dimensionless scalar as a division of ElectricalCurrent and ElectricalCurrent
173      */
174     public final Dimensionless divideBy(final ElectricalCurrent v)
175     {
176         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
177     }
178 
179     /**
180      * Calculate the multiplication of ElectricalCurrent and ElectricalPotential, which results in a Power scalar.
181      * @param v ElectricalCurrent scalar
182      * @return Power scalar as a multiplication of ElectricalCurrent and ElectricalPotential
183      */
184     public final Power multiplyBy(final ElectricalPotential v)
185     {
186         return new Power(this.si * v.si, PowerUnit.SI);
187     }
188 
189     /**
190      * Calculate the multiplication of ElectricalCurrent and Duration, which results in a ElectricalCharge scalar.
191      * @param v ElectricalCurrent scalar
192      * @return ElectricalCharge scalar as a multiplication of ElectricalCurrent and Duration
193      */
194     public final ElectricalCharge multiplyBy(final Duration v)
195     {
196         return new ElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
197     }
198 
199     /**
200      * Calculate the multiplication of ElectricalCurrent and ElectricalResistance, which results in a ElectricalPotential
201      * scalar.
202      * @param v ElectricalCurrent scalar
203      * @return ElectricalPotential scalar as a multiplication of ElectricalCurrent and ElectricalResistance
204      */
205     public final ElectricalPotential multiplyBy(final ElectricalResistance v)
206     {
207         return new ElectricalPotential(this.si * v.si, ElectricalPotentialUnit.SI);
208     }
209 
210 }