View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import org.djunits.unit.DimensionlessUnit;
4   import org.djunits.unit.ElectricalCurrentUnit;
5   import org.djunits.unit.ElectricalPotentialUnit;
6   import org.djunits.unit.ElectricalResistanceUnit;
7   import org.djunits.unit.PowerUnit;
8   
9   /**
10   * Easy access methods for the ElectricalPotential DoubleScalar, which is relative by definition. Instead of:
11   * 
12   * <pre>
13   * DoubleScalar.Rel&lt;ElectricalPotentialUnit&gt; value =
14   *         new DoubleScalar.Rel&lt;ElectricalPotentialUnit&gt;(100.0, ElectricalPotentialUnit.SI);
15   * </pre>
16   * 
17   * we can now write:
18   * 
19   * <pre>
20   * ElectricalPotential value = new ElectricalPotential(100.0, ElectricalPotentialUnit.SI);
21   * </pre>
22   * 
23   * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
24   * used are compatible.
25   * <p>
26   * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
27   * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
28   * <p>
29   * $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
30   * initial version Sep 5, 2015 <br>
31   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
32   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
33   */
34  public class ElectricalPotential extends AbstractDoubleScalarRel<ElectricalPotentialUnit, ElectricalPotential>
35  {
36      /** */
37      private static final long serialVersionUID = 20150905L;
38  
39      /** constant with value zero. */
40      public static final ElectricalPotential ZERO = new ElectricalPotential(0.0, ElectricalPotentialUnit.SI);
41  
42      /** constant with value NaN. */
43      @SuppressWarnings("checkstyle:constantname")
44      public static final ElectricalPotential NaN = new ElectricalPotential(Double.NaN, ElectricalPotentialUnit.SI);
45  
46      /** constant with value POSITIVE_INFINITY. */
47      public static final ElectricalPotential POSITIVE_INFINITY =
48              new ElectricalPotential(Double.POSITIVE_INFINITY, ElectricalPotentialUnit.SI);
49  
50      /** constant with value NEGATIVE_INFINITY. */
51      public static final ElectricalPotential NEGATIVE_INFINITY =
52              new ElectricalPotential(Double.NEGATIVE_INFINITY, ElectricalPotentialUnit.SI);
53  
54      /** constant with value MAX_VALUE. */
55      public static final ElectricalPotential POS_MAXVALUE =
56              new ElectricalPotential(Double.MAX_VALUE, ElectricalPotentialUnit.SI);
57  
58      /** constant with value -MAX_VALUE. */
59      public static final ElectricalPotential NEG_MAXVALUE =
60              new ElectricalPotential(-Double.MAX_VALUE, ElectricalPotentialUnit.SI);
61  
62      /**
63       * Construct ElectricalPotential scalar.
64       * @param value double value
65       * @param unit unit for the double value
66       */
67      public ElectricalPotential(final double value, final ElectricalPotentialUnit unit)
68      {
69          super(value, unit);
70      }
71  
72      /**
73       * Construct ElectricalPotential scalar.
74       * @param value Scalar from which to construct this instance
75       */
76      public ElectricalPotential(final ElectricalPotential value)
77      {
78          super(value);
79      }
80  
81      /** {@inheritDoc} */
82      @Override
83      public final ElectricalPotential instantiateRel(final double value, final ElectricalPotentialUnit unit)
84      {
85          return new ElectricalPotential(value, unit);
86      }
87  
88      /**
89       * Construct ElectricalPotential scalar.
90       * @param value double value in SI units
91       * @return the new scalar with the SI value
92       */
93      public static final ElectricalPotential createSI(final double value)
94      {
95          return new ElectricalPotential(value, ElectricalPotentialUnit.SI);
96      }
97  
98      /**
99       * Interpolate between two values.
100      * @param zero the low value
101      * @param one the high value
102      * @param ratio the ratio between 0 and 1, inclusive
103      * @return a Scalar at the ratio between
104      */
105     public static ElectricalPotential interpolate(final ElectricalPotential zero, final ElectricalPotential one,
106             final double ratio)
107     {
108         return new ElectricalPotential(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
109     }
110 
111     /**
112      * Return the maximum value of two relative scalars.
113      * @param r1 the first scalar
114      * @param r2 the second scalar
115      * @return the maximum value of two relative scalars
116      */
117     public static ElectricalPotential max(final ElectricalPotential r1, final ElectricalPotential r2)
118     {
119         return (r1.gt(r2)) ? r1 : r2;
120     }
121 
122     /**
123      * Return the maximum value of more than two relative scalars.
124      * @param r1 the first scalar
125      * @param r2 the second scalar
126      * @param rn the other scalars
127      * @return the maximum value of more than two relative scalars
128      */
129     public static ElectricalPotential max(final ElectricalPotential r1, final ElectricalPotential r2,
130             final ElectricalPotential... rn)
131     {
132         ElectricalPotential maxr = (r1.gt(r2)) ? r1 : r2;
133         for (ElectricalPotential r : rn)
134         {
135             if (r.gt(maxr))
136             {
137                 maxr = r;
138             }
139         }
140         return maxr;
141     }
142 
143     /**
144      * Return the minimum value of two relative scalars.
145      * @param r1 the first scalar
146      * @param r2 the second scalar
147      * @return the minimum value of two relative scalars
148      */
149     public static ElectricalPotential min(final ElectricalPotential r1, final ElectricalPotential r2)
150     {
151         return (r1.lt(r2)) ? r1 : r2;
152     }
153 
154     /**
155      * Return the minimum value of more than two relative scalars.
156      * @param r1 the first scalar
157      * @param r2 the second scalar
158      * @param rn the other scalars
159      * @return the minimum value of more than two relative scalars
160      */
161     public static ElectricalPotential min(final ElectricalPotential r1, final ElectricalPotential r2,
162             final ElectricalPotential... rn)
163     {
164         ElectricalPotential minr = (r1.lt(r2)) ? r1 : r2;
165         for (ElectricalPotential r : rn)
166         {
167             if (r.lt(minr))
168             {
169                 minr = r;
170             }
171         }
172         return minr;
173     }
174 
175     /**
176      * Calculate the division of ElectricalPotential and ElectricalPotential, which results in a Dimensionless scalar.
177      * @param v ElectricalPotential scalar
178      * @return Dimensionless scalar as a division of ElectricalPotential and ElectricalPotential
179      */
180     public final Dimensionless divideBy(final ElectricalPotential v)
181     {
182         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
183     }
184 
185     /**
186      * Calculate the multiplication of ElectricalPotential and ElectricalCurrent, which results in a Power scalar.
187      * @param v ElectricalPotential scalar
188      * @return Power scalar as a multiplication of ElectricalPotential and ElectricalCurrent
189      */
190     public final Power multiplyBy(final ElectricalCurrent v)
191     {
192         return new Power(this.si * v.si, PowerUnit.SI);
193     }
194 
195     /**
196      * Calculate the division of ElectricalPotential and ElectricalCurrent, which results in a ElectricalResistance scalar.
197      * @param v ElectricalPotential scalar
198      * @return ElectricalResistance scalar as a division of ElectricalPotential and ElectricalCurrent
199      */
200     public final ElectricalResistance divideBy(final ElectricalCurrent v)
201     {
202         return new ElectricalResistance(this.si / v.si, ElectricalResistanceUnit.SI);
203     }
204 
205     /**
206      * Calculate the division of ElectricalPotential and ElectricalResistance, which results in a ElectricalCurrent scalar.
207      * @param v ElectricalPotential scalar
208      * @return ElectricalCurrent scalar as a division of ElectricalPotential and ElectricalResistance
209      */
210     public final ElectricalCurrent divideBy(final ElectricalResistance v)
211     {
212         return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
213     }
214 
215 }