| Package | Description |
|---|---|
| org.djunits.value.vfloat.scalar |
Float Scalar storage and calculations with units, absolute/relative.
|
| Modifier and Type | Method and Description |
|---|---|
FloatPower |
FloatPower.abs()
Set the value(s) to their absolute value.
|
FloatPower |
FloatPower.acos()
Set the value(s) to the arc cosine of the value(s); the resulting angle is in the range 0.0 through pi.
|
FloatPower |
FloatPower.asin()
Set the value(s) to the arc sine of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
FloatPower |
FloatPower.atan()
Set the value(s) to the arc tangent of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
FloatPower |
FloatPower.cbrt()
Set the value(s) to the(ir) cube root.
|
FloatPower |
FloatPower.ceil()
Set the value(s) to the smallest (closest to negative infinity) value(s) that are greater than or equal to the argument
and equal to a mathematical integer.
|
FloatPower |
FloatPower.cos()
Set the value(s) to the trigonometric cosine of the value(s).
|
FloatPower |
FloatPower.cosh()
Set the value(s) to the hyperbolic cosine of the value(s).
|
FloatPower |
FloatPower.divideBy(double factor)
Divide scalar by a double factor.
|
FloatPower |
FloatPower.divideBy(float divisor)
Scale the value(s) by the inverse of a factor; i.e.
|
FloatPower |
FloatTorque.divideBy(FloatTime.Rel v)
Calculate the division of FloatTorque and FloatTime, which results in a FloatPower scalar.
|
FloatPower |
FloatEnergy.divideBy(FloatTime.Rel v)
Calculate the division of FloatEnergy and FloatTime, which results in a FloatPower scalar.
|
FloatPower |
FloatPower.exp()
Set the value(s) to Euler's number e raised to the power of the value(s).
|
FloatPower |
FloatPower.expm1()
Set the value(s) to Euler's number e raised to the power of the value(s) minus 1 (e^x - 1).
|
FloatPower |
FloatPower.floor()
Set the value(s) to the largest (closest to positive infinity) value(s) that are less than or equal to the argument and
equal to a mathematical integer.
|
static FloatPower |
FloatPower.interpolate(FloatPower zero,
FloatPower one,
double ratio)
Interpolate between two values.
|
static FloatPower |
FloatPower.interpolate(FloatPower zero,
FloatPower one,
float ratio)
Interpolate between two values.
|
FloatPower |
FloatPower.inv()
Set the value(s) to the complement (1.0/x) of the value(s).
|
FloatPower |
FloatPower.log()
Set the value(s) to the natural logarithm (base e) of the value(s).
|
FloatPower |
FloatPower.log10()
Set the value(s) to the base 10 logarithm of the value(s).
|
FloatPower |
FloatPower.log1p()
Set the value(s) to the natural logarithm of the sum of the value(s) and 1.
|
FloatPower |
FloatPower.minus(FloatPower v)
Relative scalar minus Relative scalar = Relative scalar.
|
FloatPower |
FloatPower.multiplyBy(double factor)
Multiply scalar with a double factor.
|
FloatPower |
FloatPower.multiplyBy(float factor)
Scale the value(s) by a factor.
|
FloatPower |
FloatElectricalPotential.multiplyBy(FloatElectricalCurrent v)
Calculate the multiplication of FloatElectricalPotential and FloatElectricalCurrent, which results in a FloatPower
scalar.
|
FloatPower |
FloatElectricalCurrent.multiplyBy(FloatElectricalPotential v)
Calculate the multiplication of FloatElectricalCurrent and FloatElectricalPotential, which results in a FloatPower
scalar.
|
FloatPower |
FloatFrequency.multiplyBy(FloatEnergy v)
Calculate the multiplication of FloatFrequency and FloatEnergy, which results in a FloatPower scalar.
|
FloatPower |
FloatSpeed.multiplyBy(FloatForce v)
Calculate the multiplication of FloatSpeed and FloatForce, which results in a FloatPower scalar.
|
FloatPower |
FloatTorque.multiplyBy(FloatFrequency v)
Calculate the multiplication of FloatTorque and FloatFrequency, which results in a FloatPower scalar.
|
FloatPower |
FloatEnergy.multiplyBy(FloatFrequency v)
Calculate the multiplication of FloatEnergy and FloatFrequency, which results in a FloatPower scalar.
|
FloatPower |
FloatDimensionless.Rel.multiplyBy(FloatPower v)
Calculate the multiplication of FloatDimensionless and FloatPower, which results in a FloatPower scalar.
|
FloatPower |
FloatForce.multiplyBy(FloatSpeed v)
Calculate the multiplication of FloatForce and FloatSpeed, which results in a FloatPower scalar.
|
FloatPower |
FloatPower.plus(FloatPower v)
Relative scalar plus Relative scalar = Relative scalar.
|
FloatPower |
FloatPower.pow(double x)
Set the value(s) to the value(s) raised to the power of the argument.
|
FloatPower |
FloatPower.rint()
Set the value(s) to the value(s) that are closest in value to the argument and equal to a mathematical integer.
|
FloatPower |
FloatPower.round()
Set the value(s) to the closest long to the argument with ties rounding up.
|
FloatPower |
FloatPower.signum()
Set the value(s) to the signum function of the value(s); zero if the argument is zero, 1.0 if the argument is greater
than zero, -1.0 if the argument is less than zero.
|
FloatPower |
FloatPower.sin()
Set the value(s) to the trigonometric sine of the value(s).
|
FloatPower |
FloatPower.sinh()
Set the value(s) to the hyperbolic sine of the value(s).
|
FloatPower |
FloatPower.sqrt()
Set the value(s) to the correctly rounded positive square root of the value(s).
|
FloatPower |
FloatPower.tan()
Set the value(s) to the trigonometric tangent of the value(s).
|
FloatPower |
FloatPower.tanh()
Set the value(s) to the hyperbolic tangent of the value(s).
|
FloatPower |
FloatPower.toDegrees()
Set the value(s) to approximately equivalent angle(s) measured in degrees.
|
FloatPower |
FloatPower.toRadians()
Set the value(s) to approximately equivalent angle(s) measured in radians.
|
| Modifier and Type | Method and Description |
|---|---|
FloatTime.Rel |
FloatTorque.divideBy(FloatPower v)
Calculate the division of FloatTorque and FloatPower, which results in a FloatTime scalar.
|
FloatDimensionless.Rel |
FloatPower.divideBy(FloatPower v)
Calculate the division of FloatPower and FloatPower, which results in a FloatDimensionless scalar.
|
FloatTime.Rel |
FloatEnergy.divideBy(FloatPower v)
Calculate the division of FloatEnergy and FloatPower, which results in a FloatTime scalar.
|
static FloatPower |
FloatPower.interpolate(FloatPower zero,
FloatPower one,
double ratio)
Interpolate between two values.
|
static FloatPower |
FloatPower.interpolate(FloatPower zero,
FloatPower one,
float ratio)
Interpolate between two values.
|
FloatPower |
FloatPower.minus(FloatPower v)
Relative scalar minus Relative scalar = Relative scalar.
|
FloatEnergy |
FloatTime.Rel.multiplyBy(FloatPower v)
Calculate the multiplication of FloatTime and FloatPower, which results in a FloatEnergy scalar.
|
FloatPower |
FloatDimensionless.Rel.multiplyBy(FloatPower v)
Calculate the multiplication of FloatDimensionless and FloatPower, which results in a FloatPower scalar.
|
FloatPower |
FloatPower.plus(FloatPower v)
Relative scalar plus Relative scalar = Relative scalar.
|
Copyright © 2015 Delft University of Technology. All rights reserved.