public class FloatElectricalPotential extends FloatScalar.Rel<ElectricalPotentialUnit> implements Relative
Copyright (c) 2013-2015 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
BSD-style license. See DJUNITS License.
$LastChangedDate: 2015-10-04 20:47:10 +0200 (Sun, 04 Oct 2015) $, @version $Revision: 86 $, by $Author: averbraeck $, initial
version Sep 5, 2015
FloatScalar.Abs<U extends Unit<U>>, FloatScalar.Rel<U extends Unit<U>>si| Constructor and Description |
|---|
FloatElectricalPotential(double value,
ElectricalPotentialUnit unit)
Construct FloatElectricalPotential scalar using a double value.
|
FloatElectricalPotential(float value,
ElectricalPotentialUnit unit)
Construct FloatElectricalPotential scalar.
|
FloatElectricalPotential(FloatScalar.Rel<ElectricalPotentialUnit> value)
Construct FloatElectricalPotential scalar.
|
| Modifier and Type | Method and Description |
|---|---|
FloatElectricalPotential |
abs()
Set the value(s) to their absolute value.
|
FloatElectricalPotential |
acos()
Set the value(s) to the arc cosine of the value(s); the resulting angle is in the range 0.0 through pi.
|
FloatElectricalPotential |
asin()
Set the value(s) to the arc sine of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
FloatElectricalPotential |
atan()
Set the value(s) to the arc tangent of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
FloatElectricalPotential |
cbrt()
Set the value(s) to the(ir) cube root.
|
FloatElectricalPotential |
ceil()
Set the value(s) to the smallest (closest to negative infinity) value(s) that are greater than or equal to the argument
and equal to a mathematical integer.
|
FloatElectricalPotential |
cos()
Set the value(s) to the trigonometric cosine of the value(s).
|
FloatElectricalPotential |
cosh()
Set the value(s) to the hyperbolic cosine of the value(s).
|
FloatElectricalPotential |
divideBy(double factor)
Divide scalar by a double factor.
|
FloatElectricalPotential |
divideBy(float divisor)
Scale the value(s) by the inverse of a factor; i.e.
|
FloatElectricalResistance |
divideBy(FloatElectricalCurrent v)
Calculate the division of FloatElectricalPotential and FloatElectricalCurrent, which results in a
FloatElectricalResistance scalar.
|
FloatDimensionless.Rel |
divideBy(FloatElectricalPotential v)
Calculate the division of FloatElectricalPotential and FloatElectricalPotential, which results in a FloatDimensionless
scalar.
|
FloatElectricalCurrent |
divideBy(FloatElectricalResistance v)
Calculate the division of FloatElectricalPotential and FloatElectricalResistance, which results in a
FloatElectricalCurrent scalar.
|
FloatElectricalPotential |
exp()
Set the value(s) to Euler's number e raised to the power of the value(s).
|
FloatElectricalPotential |
expm1()
Set the value(s) to Euler's number e raised to the power of the value(s) minus 1 (e^x - 1).
|
FloatElectricalPotential |
floor()
Set the value(s) to the largest (closest to positive infinity) value(s) that are less than or equal to the argument and
equal to a mathematical integer.
|
static FloatElectricalPotential |
interpolate(FloatElectricalPotential zero,
FloatElectricalPotential one,
double ratio)
Interpolate between two values.
|
static FloatElectricalPotential |
interpolate(FloatElectricalPotential zero,
FloatElectricalPotential one,
float ratio)
Interpolate between two values.
|
FloatElectricalPotential |
inv()
Set the value(s) to the complement (1.0/x) of the value(s).
|
FloatElectricalPotential |
log()
Set the value(s) to the natural logarithm (base e) of the value(s).
|
FloatElectricalPotential |
log10()
Set the value(s) to the base 10 logarithm of the value(s).
|
FloatElectricalPotential |
log1p()
Set the value(s) to the natural logarithm of the sum of the value(s) and 1.
|
FloatElectricalPotential |
minus(FloatElectricalPotential v)
Relative scalar minus Relative scalar = Relative scalar.
|
FloatElectricalPotential |
multiplyBy(double factor)
Multiply scalar with a double factor.
|
FloatElectricalPotential |
multiplyBy(float factor)
Scale the value(s) by a factor.
|
FloatPower |
multiplyBy(FloatElectricalCurrent v)
Calculate the multiplication of FloatElectricalPotential and FloatElectricalCurrent, which results in a FloatPower
scalar.
|
FloatElectricalPotential |
plus(FloatElectricalPotential v)
Relative scalar plus Relative scalar = Relative scalar.
|
FloatElectricalPotential |
pow(double x)
Set the value(s) to the value(s) raised to the power of the argument.
|
FloatElectricalPotential |
rint()
Set the value(s) to the value(s) that are closest in value to the argument and equal to a mathematical integer.
|
FloatElectricalPotential |
round()
Set the value(s) to the closest long to the argument with ties rounding up.
|
FloatElectricalPotential |
signum()
Set the value(s) to the signum function of the value(s); zero if the argument is zero, 1.0 if the argument is greater
than zero, -1.0 if the argument is less than zero.
|
FloatElectricalPotential |
sin()
Set the value(s) to the trigonometric sine of the value(s).
|
FloatElectricalPotential |
sinh()
Set the value(s) to the hyperbolic sine of the value(s).
|
FloatElectricalPotential |
sqrt()
Set the value(s) to the correctly rounded positive square root of the value(s).
|
FloatElectricalPotential |
tan()
Set the value(s) to the trigonometric tangent of the value(s).
|
FloatElectricalPotential |
tanh()
Set the value(s) to the hyperbolic tangent of the value(s).
|
FloatElectricalPotential |
toDegrees()
Set the value(s) to approximately equivalent angle(s) measured in degrees.
|
FloatElectricalPotential |
toRadians()
Set the value(s) to approximately equivalent angle(s) measured in radians.
|
compareTo, eq, ge, getSI, gt, le, lt, minus, ne, plusdivide, divide, doubleValue, equals, floatValue, getInUnit, getInUnit, hashCode, interpolate, interpolate, intValue, longValue, minus, minus, minus, multiply, multiply, plus, plus, plus, toString, toString, toString, toStringexpressAsSIUnit, expressAsSpecifiedUnit, getUnit, isAbsolute, isRelativebyteValue, shortValuepublic FloatElectricalPotential(float value,
ElectricalPotentialUnit unit)
value - float valueunit - unit for the float valuepublic FloatElectricalPotential(double value,
ElectricalPotentialUnit unit)
value - double valueunit - unit for the valuepublic FloatElectricalPotential(FloatScalar.Rel<ElectricalPotentialUnit> value)
value - Scalar from which to construct this instancepublic static FloatElectricalPotential interpolate(FloatElectricalPotential zero, FloatElectricalPotential one, float ratio)
zero - the low valueone - the high valueratio - the ratio between 0 and 1, inclusivepublic static FloatElectricalPotential interpolate(FloatElectricalPotential zero, FloatElectricalPotential one, double ratio)
zero - the low valueone - the high valueratio - the ratio between 0 and 1, inclusivepublic final FloatElectricalPotential abs()
abs in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>abs in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential acos()
acos in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>acos in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential asin()
asin in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>asin in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential atan()
atan in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>atan in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential cbrt()
cbrt in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>cbrt in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential ceil()
ceil in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>ceil in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential cos()
cos in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>cos in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential cosh()
cosh in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>cosh in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential exp()
exp in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>exp in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential expm1()
expm1 in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>expm1 in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential floor()
floor in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>floor in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential log()
log in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>log in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential log10()
log10 in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>log10 in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential log1p()
log1p in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>log1p in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential rint()
rint in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>rint in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential round()
round in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>round in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential signum()
signum in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>signum in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential sin()
sin in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>sin in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential sinh()
sinh in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>sinh in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential sqrt()
sqrt in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>sqrt in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential tan()
tan in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>tan in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential tanh()
tanh in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>tanh in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential inv()
inv in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>inv in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential toDegrees()
toDegrees in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>toDegrees in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential toRadians()
toRadians in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>toRadians in class FloatScalar.Rel<ElectricalPotentialUnit>public final FloatElectricalPotential pow(double x)
pow in interface MathFunctions<FloatScalar<ElectricalPotentialUnit>>pow in class FloatScalar.Rel<ElectricalPotentialUnit>x - double; the value to use as the powerpublic final FloatElectricalPotential multiplyBy(float factor)
multiplyBy in interface FloatMathFunctions<FloatScalar<ElectricalPotentialUnit>>multiplyBy in class FloatScalar.Rel<ElectricalPotentialUnit>factor - float; the multiplierpublic final FloatElectricalPotential multiplyBy(double factor)
factor - the factor to multiply withpublic final FloatElectricalPotential divideBy(float divisor)
divideBy in interface FloatMathFunctions<FloatScalar<ElectricalPotentialUnit>>divideBy in class FloatScalar.Rel<ElectricalPotentialUnit>divisor - float; the divisorpublic final FloatElectricalPotential divideBy(double factor)
factor - the factor to divide bypublic final FloatElectricalPotential plus(FloatElectricalPotential v)
v - the value to addpublic final FloatElectricalPotential minus(FloatElectricalPotential v)
v - the value to subtractpublic final FloatDimensionless.Rel divideBy(FloatElectricalPotential v)
v - FloatElectricalPotential scalarpublic final FloatPower multiplyBy(FloatElectricalCurrent v)
v - FloatElectricalPotential scalarpublic final FloatElectricalResistance divideBy(FloatElectricalCurrent v)
v - FloatElectricalPotential scalarpublic final FloatElectricalCurrent divideBy(FloatElectricalResistance v)
v - FloatElectricalPotential scalarCopyright © 2015 Delft University of Technology. All rights reserved.