View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.DurationUnit;
8   import org.djunits.unit.ElectricalCurrentUnit;
9   import org.djunits.unit.ElectricalInductanceUnit;
10  import org.djunits.unit.ElectricalPotentialUnit;
11  import org.djunits.unit.MagneticFluxDensityUnit;
12  import org.djunits.unit.MagneticFluxUnit;
13  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
14  import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
15  import org.djutils.base.NumberParser;
16  import org.djutils.exceptions.Throw;
17  
18  import jakarta.annotation.Generated;
19  
20  /**
21   * Easy access methods for the MagneticFlux DoubleScalar, which is relative by definition.
22   * <p>
23   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
24   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
25   * </p>
26   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
27   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
28   */
29  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
30  public class MagneticFlux extends DoubleScalarRel<MagneticFluxUnit, MagneticFlux>
31  {
32      /** */
33      private static final long serialVersionUID = 20150905L;
34  
35      /** Constant with value zero. */
36      public static final MagneticFlux ZERO = new MagneticFlux(0.0, MagneticFluxUnit.SI);
37  
38      /** Constant with value one. */
39      public static final MagneticFlux ONE = new MagneticFlux(1.0, MagneticFluxUnit.SI);
40  
41      /** Constant with value NaN. */
42      @SuppressWarnings("checkstyle:constantname")
43      public static final MagneticFlux NaN = new MagneticFlux(Double.NaN, MagneticFluxUnit.SI);
44  
45      /** Constant with value POSITIVE_INFINITY. */
46      public static final MagneticFlux POSITIVE_INFINITY = new MagneticFlux(Double.POSITIVE_INFINITY, MagneticFluxUnit.SI);
47  
48      /** Constant with value NEGATIVE_INFINITY. */
49      public static final MagneticFlux NEGATIVE_INFINITY = new MagneticFlux(Double.NEGATIVE_INFINITY, MagneticFluxUnit.SI);
50  
51      /** Constant with value MAX_VALUE. */
52      public static final MagneticFlux POS_MAXVALUE = new MagneticFlux(Double.MAX_VALUE, MagneticFluxUnit.SI);
53  
54      /** Constant with value -MAX_VALUE. */
55      public static final MagneticFlux NEG_MAXVALUE = new MagneticFlux(-Double.MAX_VALUE, MagneticFluxUnit.SI);
56  
57      /**
58       * Construct MagneticFlux scalar.
59       * @param value double; the double value
60       * @param unit MagneticFluxUnit; unit for the double value
61       */
62      public MagneticFlux(final double value, final MagneticFluxUnit unit)
63      {
64          super(value, unit);
65      }
66  
67      /**
68       * Construct MagneticFlux scalar.
69       * @param value MagneticFlux; Scalar from which to construct this instance
70       */
71      public MagneticFlux(final MagneticFlux value)
72      {
73          super(value);
74      }
75  
76      /** {@inheritDoc} */
77      @Override
78      public final MagneticFlux instantiateRel(final double value, final MagneticFluxUnit unit)
79      {
80          return new MagneticFlux(value, unit);
81      }
82  
83      /**
84       * Construct MagneticFlux scalar.
85       * @param value double; the double value in SI units
86       * @return MagneticFlux; the new scalar with the SI value
87       */
88      public static final MagneticFlux instantiateSI(final double value)
89      {
90          return new MagneticFlux(value, MagneticFluxUnit.SI);
91      }
92  
93      /**
94       * Interpolate between two values.
95       * @param zero MagneticFlux; the low value
96       * @param one MagneticFlux; the high value
97       * @param ratio double; the ratio between 0 and 1, inclusive
98       * @return MagneticFlux; a Scalar at the ratio between
99       */
100     public static MagneticFlux interpolate(final MagneticFlux zero, final MagneticFlux one, final double ratio)
101     {
102         return new MagneticFlux(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
103                 zero.getDisplayUnit());
104     }
105 
106     /**
107      * Return the maximum value of two relative scalars.
108      * @param r1 MagneticFlux; the first scalar
109      * @param r2 MagneticFlux; the second scalar
110      * @return MagneticFlux; the maximum value of two relative scalars
111      */
112     public static MagneticFlux max(final MagneticFlux r1, final MagneticFlux r2)
113     {
114         return r1.gt(r2) ? r1 : r2;
115     }
116 
117     /**
118      * Return the maximum value of more than two relative scalars.
119      * @param r1 MagneticFlux; the first scalar
120      * @param r2 MagneticFlux; the second scalar
121      * @param rn MagneticFlux...; the other scalars
122      * @return MagneticFlux; the maximum value of more than two relative scalars
123      */
124     public static MagneticFlux max(final MagneticFlux r1, final MagneticFlux r2, final MagneticFlux... rn)
125     {
126         MagneticFlux maxr = r1.gt(r2) ? r1 : r2;
127         for (MagneticFlux r : rn)
128         {
129             if (r.gt(maxr))
130             {
131                 maxr = r;
132             }
133         }
134         return maxr;
135     }
136 
137     /**
138      * Return the minimum value of two relative scalars.
139      * @param r1 MagneticFlux; the first scalar
140      * @param r2 MagneticFlux; the second scalar
141      * @return MagneticFlux; the minimum value of two relative scalars
142      */
143     public static MagneticFlux min(final MagneticFlux r1, final MagneticFlux r2)
144     {
145         return r1.lt(r2) ? r1 : r2;
146     }
147 
148     /**
149      * Return the minimum value of more than two relative scalars.
150      * @param r1 MagneticFlux; the first scalar
151      * @param r2 MagneticFlux; the second scalar
152      * @param rn MagneticFlux...; the other scalars
153      * @return MagneticFlux; the minimum value of more than two relative scalars
154      */
155     public static MagneticFlux min(final MagneticFlux r1, final MagneticFlux r2, final MagneticFlux... rn)
156     {
157         MagneticFlux minr = r1.lt(r2) ? r1 : r2;
158         for (MagneticFlux r : rn)
159         {
160             if (r.lt(minr))
161             {
162                 minr = r;
163             }
164         }
165         return minr;
166     }
167 
168     /**
169      * Returns a MagneticFlux representation of a textual representation of a value with a unit. The String representation that
170      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
171      * allowed, but not required, between the value and the unit.
172      * @param text String; the textual representation to parse into a MagneticFlux
173      * @return MagneticFlux; the Scalar representation of the value in its unit
174      * @throws IllegalArgumentException when the text cannot be parsed
175      * @throws NullPointerException when the text argument is null
176      */
177     public static MagneticFlux valueOf(final String text)
178     {
179         Throw.whenNull(text, "Error parsing MagneticFlux: text to parse is null");
180         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing MagneticFlux: empty text to parse");
181         try
182         {
183             NumberParser numberParser = new NumberParser().lenient().trailing();
184             double d = numberParser.parseDouble(text);
185             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
186             MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
187             if (unit == null)
188                 throw new IllegalArgumentException("Unit " + unitString + " not found");
189             return new MagneticFlux(d, unit);
190         }
191         catch (Exception exception)
192         {
193             throw new IllegalArgumentException(
194                     "Error parsing MagneticFlux from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
195                     exception);
196         }
197     }
198 
199     /**
200      * Returns a MagneticFlux based on a value and the textual representation of the unit, which can be localized.
201      * @param value double; the value to use
202      * @param unitString String; the textual representation of the unit
203      * @return MagneticFlux; the Scalar representation of the value in its unit
204      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
205      * @throws NullPointerException when the unitString argument is null
206      */
207     public static MagneticFlux of(final double value, final String unitString)
208     {
209         Throw.whenNull(unitString, "Error parsing MagneticFlux: unitString is null");
210         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing MagneticFlux: empty unitString");
211         MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
212         if (unit != null)
213         {
214             return new MagneticFlux(value, unit);
215         }
216         throw new IllegalArgumentException("Error parsing MagneticFlux with unit " + unitString);
217     }
218 
219     /**
220      * Calculate the division of MagneticFlux and MagneticFlux, which results in a Dimensionless scalar.
221      * @param v MagneticFlux; scalar
222      * @return Dimensionless; scalar as a division of MagneticFlux and MagneticFlux
223      */
224     public final Dimensionless divide(final MagneticFlux v)
225     {
226         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
227     }
228 
229     /**
230      * Calculate the division of MagneticFlux and ElectricalPotential, which results in a Duration scalar.
231      * @param v MagneticFlux; scalar
232      * @return Duration; scalar as a division of MagneticFlux and ElectricalPotential
233      */
234     public final Duration divide(final ElectricalPotential v)
235     {
236         return new Duration(this.si / v.si, DurationUnit.SI);
237     }
238 
239     /**
240      * Calculate the division of MagneticFlux and Duration, which results in a ElectricalPotential scalar.
241      * @param v MagneticFlux; scalar
242      * @return ElectricalPotential; scalar as a division of MagneticFlux and Duration
243      */
244     public final ElectricalPotential divide(final Duration v)
245     {
246         return new ElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
247     }
248 
249     /**
250      * Calculate the division of MagneticFlux and Area, which results in a MagneticFluxDensity scalar.
251      * @param v MagneticFlux; scalar
252      * @return MagneticFluxDensity; scalar as a division of MagneticFlux and Area
253      */
254     public final MagneticFluxDensity divide(final Area v)
255     {
256         return new MagneticFluxDensity(this.si / v.si, MagneticFluxDensityUnit.SI);
257     }
258 
259     /**
260      * Calculate the division of MagneticFlux and MagneticFluxDensity, which results in a Area scalar.
261      * @param v MagneticFlux; scalar
262      * @return Area; scalar as a division of MagneticFlux and MagneticFluxDensity
263      */
264     public final Area divide(final MagneticFluxDensity v)
265     {
266         return new Area(this.si / v.si, AreaUnit.SI);
267     }
268 
269     /**
270      * Calculate the division of MagneticFlux and ElectricalCurrent, which results in a ElectricalInductance scalar.
271      * @param v MagneticFlux; scalar
272      * @return ElectricalInductance; scalar as a division of MagneticFlux and ElectricalCurrent
273      */
274     public final ElectricalInductance divide(final ElectricalCurrent v)
275     {
276         return new ElectricalInductance(this.si / v.si, ElectricalInductanceUnit.SI);
277     }
278 
279     /**
280      * Calculate the division of MagneticFlux and ElectricalInductance, which results in a ElectricalCurrent scalar.
281      * @param v MagneticFlux; scalar
282      * @return ElectricalCurrent; scalar as a division of MagneticFlux and ElectricalInductance
283      */
284     public final ElectricalCurrent divide(final ElectricalInductance v)
285     {
286         return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
287     }
288 
289     /** {@inheritDoc} */
290     @Override
291     public SIScalar reciprocal()
292     {
293         return DoubleScalar.divide(Dimensionless.ONE, this);
294     }
295 
296 }