View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DimensionlessUnit;
6   import org.djunits.unit.ElectricalChargeUnit;
7   import org.djunits.unit.ElectricalConductanceUnit;
8   import org.djunits.unit.ElectricalCurrentUnit;
9   import org.djunits.unit.ElectricalPotentialUnit;
10  import org.djunits.unit.PowerUnit;
11  import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRel;
12  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
13  import org.djutils.base.NumberParser;
14  import org.djutils.exceptions.Throw;
15  
16  import jakarta.annotation.Generated;
17  
18  /**
19   * Easy access methods for the ElectricalCurrent DoubleScalar, which is relative by definition.
20   * <p>
21   * Copyright (c) 2013-2023 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
22   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
23   * </p>
24   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
25   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
26   */
27  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-04-30T13:59:27.633664900Z")
28  public class ElectricalCurrent extends AbstractDoubleScalarRel<ElectricalCurrentUnit, ElectricalCurrent>
29  {
30      /** */
31      private static final long serialVersionUID = 20150905L;
32  
33      /** Constant with value zero. */
34      public static final ElectricalCurrent ZERO = new ElectricalCurrent(0.0, ElectricalCurrentUnit.SI);
35  
36      /** Constant with value one. */
37      public static final ElectricalCurrent ONE = new ElectricalCurrent(1.0, ElectricalCurrentUnit.SI);
38  
39      /** Constant with value NaN. */
40      @SuppressWarnings("checkstyle:constantname")
41      public static final ElectricalCurrent NaN = new ElectricalCurrent(Double.NaN, ElectricalCurrentUnit.SI);
42  
43      /** Constant with value POSITIVE_INFINITY. */
44      public static final ElectricalCurrent POSITIVE_INFINITY =
45              new ElectricalCurrent(Double.POSITIVE_INFINITY, ElectricalCurrentUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final ElectricalCurrent NEGATIVE_INFINITY =
49              new ElectricalCurrent(Double.NEGATIVE_INFINITY, ElectricalCurrentUnit.SI);
50  
51      /** Constant with value MAX_VALUE. */
52      public static final ElectricalCurrent POS_MAXVALUE = new ElectricalCurrent(Double.MAX_VALUE, ElectricalCurrentUnit.SI);
53  
54      /** Constant with value -MAX_VALUE. */
55      public static final ElectricalCurrent NEG_MAXVALUE = new ElectricalCurrent(-Double.MAX_VALUE, ElectricalCurrentUnit.SI);
56  
57      /**
58       * Construct ElectricalCurrent scalar.
59       * @param value double; the double value
60       * @param unit ElectricalCurrentUnit; unit for the double value
61       */
62      public ElectricalCurrent(final double value, final ElectricalCurrentUnit unit)
63      {
64          super(value, unit);
65      }
66  
67      /**
68       * Construct ElectricalCurrent scalar.
69       * @param value ElectricalCurrent; Scalar from which to construct this instance
70       */
71      public ElectricalCurrent(final ElectricalCurrent value)
72      {
73          super(value);
74      }
75  
76      /** {@inheritDoc} */
77      @Override
78      public final ElectricalCurrent instantiateRel(final double value, final ElectricalCurrentUnit unit)
79      {
80          return new ElectricalCurrent(value, unit);
81      }
82  
83      /**
84       * Construct ElectricalCurrent scalar.
85       * @param value double; the double value in SI units
86       * @return ElectricalCurrent; the new scalar with the SI value
87       */
88      public static final ElectricalCurrent instantiateSI(final double value)
89      {
90          return new ElectricalCurrent(value, ElectricalCurrentUnit.SI);
91      }
92  
93      /**
94       * Interpolate between two values.
95       * @param zero ElectricalCurrent; the low value
96       * @param one ElectricalCurrent; the high value
97       * @param ratio double; the ratio between 0 and 1, inclusive
98       * @return ElectricalCurrent; a Scalar at the ratio between
99       */
100     public static ElectricalCurrent interpolate(final ElectricalCurrent zero, final ElectricalCurrent one, final double ratio)
101     {
102         return new ElectricalCurrent(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
103                 zero.getDisplayUnit());
104     }
105 
106     /**
107      * Return the maximum value of two relative scalars.
108      * @param r1 ElectricalCurrent; the first scalar
109      * @param r2 ElectricalCurrent; the second scalar
110      * @return ElectricalCurrent; the maximum value of two relative scalars
111      */
112     public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2)
113     {
114         return r1.gt(r2) ? r1 : r2;
115     }
116 
117     /**
118      * Return the maximum value of more than two relative scalars.
119      * @param r1 ElectricalCurrent; the first scalar
120      * @param r2 ElectricalCurrent; the second scalar
121      * @param rn ElectricalCurrent...; the other scalars
122      * @return ElectricalCurrent; the maximum value of more than two relative scalars
123      */
124     public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
125     {
126         ElectricalCurrent maxr = r1.gt(r2) ? r1 : r2;
127         for (ElectricalCurrent r : rn)
128         {
129             if (r.gt(maxr))
130             {
131                 maxr = r;
132             }
133         }
134         return maxr;
135     }
136 
137     /**
138      * Return the minimum value of two relative scalars.
139      * @param r1 ElectricalCurrent; the first scalar
140      * @param r2 ElectricalCurrent; the second scalar
141      * @return ElectricalCurrent; the minimum value of two relative scalars
142      */
143     public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2)
144     {
145         return r1.lt(r2) ? r1 : r2;
146     }
147 
148     /**
149      * Return the minimum value of more than two relative scalars.
150      * @param r1 ElectricalCurrent; the first scalar
151      * @param r2 ElectricalCurrent; the second scalar
152      * @param rn ElectricalCurrent...; the other scalars
153      * @return ElectricalCurrent; the minimum value of more than two relative scalars
154      */
155     public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
156     {
157         ElectricalCurrent minr = r1.lt(r2) ? r1 : r2;
158         for (ElectricalCurrent r : rn)
159         {
160             if (r.lt(minr))
161             {
162                 minr = r;
163             }
164         }
165         return minr;
166     }
167 
168     /**
169      * Returns a ElectricalCurrent representation of a textual representation of a value with a unit. The String representation
170      * that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
171      * are allowed, but not required, between the value and the unit.
172      * @param text String; the textual representation to parse into a ElectricalCurrent
173      * @return ElectricalCurrent; the Scalar representation of the value in its unit
174      * @throws IllegalArgumentException when the text cannot be parsed
175      * @throws NullPointerException when the text argument is null
176      */
177     public static ElectricalCurrent valueOf(final String text)
178     {
179         Throw.whenNull(text, "Error parsing ElectricalCurrent: text to parse is null");
180         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing ElectricalCurrent: empty text to parse");
181         try
182         {
183             NumberParser numberParser = new NumberParser().lenient().trailing();
184             double d = numberParser.parseDouble(text);
185             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
186             ElectricalCurrentUnit unit = ElectricalCurrentUnit.BASE.getUnitByAbbreviation(unitString);
187             if (unit == null)
188                 throw new IllegalArgumentException("Unit " + unitString + " not found");
189             return new ElectricalCurrent(d, unit);
190         }
191         catch (Exception exception)
192         {
193             throw new IllegalArgumentException("Error parsing ElectricalCurrent from " + text + " using Locale "
194                     + Locale.getDefault(Locale.Category.FORMAT), exception);
195         }
196     }
197 
198     /**
199      * Returns a ElectricalCurrent based on a value and the textual representation of the unit, which can be localized.
200      * @param value double; the value to use
201      * @param unitString String; the textual representation of the unit
202      * @return ElectricalCurrent; the Scalar representation of the value in its unit
203      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
204      * @throws NullPointerException when the unitString argument is null
205      */
206     public static ElectricalCurrent of(final double value, final String unitString)
207     {
208         Throw.whenNull(unitString, "Error parsing ElectricalCurrent: unitString is null");
209         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
210                 "Error parsing ElectricalCurrent: empty unitString");
211         ElectricalCurrentUnit unit = ElectricalCurrentUnit.BASE.getUnitByAbbreviation(unitString);
212         if (unit != null)
213         {
214             return new ElectricalCurrent(value, unit);
215         }
216         throw new IllegalArgumentException("Error parsing ElectricalCurrent with unit " + unitString);
217     }
218 
219     /**
220      * Calculate the division of ElectricalCurrent and ElectricalCurrent, which results in a Dimensionless scalar.
221      * @param v ElectricalCurrent; scalar
222      * @return Dimensionless; scalar as a division of ElectricalCurrent and ElectricalCurrent
223      */
224     public final Dimensionless divide(final ElectricalCurrent v)
225     {
226         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
227     }
228 
229     /**
230      * Calculate the multiplication of ElectricalCurrent and ElectricalPotential, which results in a Power scalar.
231      * @param v ElectricalCurrent; scalar
232      * @return Power; scalar as a multiplication of ElectricalCurrent and ElectricalPotential
233      */
234     public final Power times(final ElectricalPotential v)
235     {
236         return new Power(this.si * v.si, PowerUnit.SI);
237     }
238 
239     /**
240      * Calculate the multiplication of ElectricalCurrent and Duration, which results in a ElectricalCharge scalar.
241      * @param v ElectricalCurrent; scalar
242      * @return ElectricalCharge; scalar as a multiplication of ElectricalCurrent and Duration
243      */
244     public final ElectricalCharge times(final Duration v)
245     {
246         return new ElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
247     }
248 
249     /**
250      * Calculate the multiplication of ElectricalCurrent and ElectricalResistance, which results in a ElectricalPotential
251      * scalar.
252      * @param v ElectricalCurrent; scalar
253      * @return ElectricalPotential; scalar as a multiplication of ElectricalCurrent and ElectricalResistance
254      */
255     public final ElectricalPotential times(final ElectricalResistance v)
256     {
257         return new ElectricalPotential(this.si * v.si, ElectricalPotentialUnit.SI);
258     }
259 
260     /**
261      * Calculate the division of ElectricalCurrent and ElectricalPotential, which results in a ElectricalConductance scalar.
262      * @param v ElectricalCurrent; scalar
263      * @return ElectricalConductance; scalar as a division of ElectricalCurrent and ElectricalPotential
264      */
265     public final ElectricalConductance divide(final ElectricalPotential v)
266     {
267         return new ElectricalConductance(this.si / v.si, ElectricalConductanceUnit.SI);
268     }
269 
270     /**
271      * Calculate the division of ElectricalCurrent and ElectricalConductance, which results in a ElectricalPotential scalar.
272      * @param v ElectricalCurrent; scalar
273      * @return ElectricalPotential; scalar as a division of ElectricalCurrent and ElectricalConductance
274      */
275     public final ElectricalPotential divide(final ElectricalConductance v)
276     {
277         return new ElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
278     }
279 
280     /** {@inheritDoc} */
281     @Override
282     public SIScalar reciprocal()
283     {
284         return DoubleScalar.divide(Dimensionless.ONE, this);
285     }
286 
287 }