View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DimensionlessUnit;
6   import org.djunits.unit.ElectricalCurrentUnit;
7   import org.djunits.unit.ElectricalPotentialUnit;
8   import org.djunits.unit.ElectricalResistanceUnit;
9   import org.djunits.unit.MagneticFluxUnit;
10  import org.djunits.unit.PowerUnit;
11  import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRel;
12  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
13  import org.djutils.base.NumberParser;
14  import org.djutils.exceptions.Throw;
15  
16  import jakarta.annotation.Generated;
17  
18  /**
19   * Easy access methods for the ElectricalPotential DoubleScalar, which is relative by definition.
20   * <p>
21   * Copyright (c) 2013-2023 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
22   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
23   * </p>
24   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
25   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
26   */
27  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-04-30T13:59:27.633664900Z")
28  public class ElectricalPotential extends AbstractDoubleScalarRel<ElectricalPotentialUnit, ElectricalPotential>
29  {
30      /** */
31      private static final long serialVersionUID = 20150905L;
32  
33      /** Constant with value zero. */
34      public static final ElectricalPotential ZERO = new ElectricalPotential(0.0, ElectricalPotentialUnit.SI);
35  
36      /** Constant with value one. */
37      public static final ElectricalPotential ONE = new ElectricalPotential(1.0, ElectricalPotentialUnit.SI);
38  
39      /** Constant with value NaN. */
40      @SuppressWarnings("checkstyle:constantname")
41      public static final ElectricalPotential NaN = new ElectricalPotential(Double.NaN, ElectricalPotentialUnit.SI);
42  
43      /** Constant with value POSITIVE_INFINITY. */
44      public static final ElectricalPotential POSITIVE_INFINITY =
45              new ElectricalPotential(Double.POSITIVE_INFINITY, ElectricalPotentialUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final ElectricalPotential NEGATIVE_INFINITY =
49              new ElectricalPotential(Double.NEGATIVE_INFINITY, ElectricalPotentialUnit.SI);
50  
51      /** Constant with value MAX_VALUE. */
52      public static final ElectricalPotential POS_MAXVALUE =
53              new ElectricalPotential(Double.MAX_VALUE, ElectricalPotentialUnit.SI);
54  
55      /** Constant with value -MAX_VALUE. */
56      public static final ElectricalPotential NEG_MAXVALUE =
57              new ElectricalPotential(-Double.MAX_VALUE, ElectricalPotentialUnit.SI);
58  
59      /**
60       * Construct ElectricalPotential scalar.
61       * @param value double; the double value
62       * @param unit ElectricalPotentialUnit; unit for the double value
63       */
64      public ElectricalPotential(final double value, final ElectricalPotentialUnit unit)
65      {
66          super(value, unit);
67      }
68  
69      /**
70       * Construct ElectricalPotential scalar.
71       * @param value ElectricalPotential; Scalar from which to construct this instance
72       */
73      public ElectricalPotential(final ElectricalPotential value)
74      {
75          super(value);
76      }
77  
78      /** {@inheritDoc} */
79      @Override
80      public final ElectricalPotential instantiateRel(final double value, final ElectricalPotentialUnit unit)
81      {
82          return new ElectricalPotential(value, unit);
83      }
84  
85      /**
86       * Construct ElectricalPotential scalar.
87       * @param value double; the double value in SI units
88       * @return ElectricalPotential; the new scalar with the SI value
89       */
90      public static final ElectricalPotential instantiateSI(final double value)
91      {
92          return new ElectricalPotential(value, ElectricalPotentialUnit.SI);
93      }
94  
95      /**
96       * Interpolate between two values.
97       * @param zero ElectricalPotential; the low value
98       * @param one ElectricalPotential; the high value
99       * @param ratio double; the ratio between 0 and 1, inclusive
100      * @return ElectricalPotential; a Scalar at the ratio between
101      */
102     public static ElectricalPotential interpolate(final ElectricalPotential zero, final ElectricalPotential one,
103             final double ratio)
104     {
105         return new ElectricalPotential(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
106                 zero.getDisplayUnit());
107     }
108 
109     /**
110      * Return the maximum value of two relative scalars.
111      * @param r1 ElectricalPotential; the first scalar
112      * @param r2 ElectricalPotential; the second scalar
113      * @return ElectricalPotential; the maximum value of two relative scalars
114      */
115     public static ElectricalPotential max(final ElectricalPotential r1, final ElectricalPotential r2)
116     {
117         return r1.gt(r2) ? r1 : r2;
118     }
119 
120     /**
121      * Return the maximum value of more than two relative scalars.
122      * @param r1 ElectricalPotential; the first scalar
123      * @param r2 ElectricalPotential; the second scalar
124      * @param rn ElectricalPotential...; the other scalars
125      * @return ElectricalPotential; the maximum value of more than two relative scalars
126      */
127     public static ElectricalPotential max(final ElectricalPotential r1, final ElectricalPotential r2,
128             final ElectricalPotential... rn)
129     {
130         ElectricalPotential maxr = r1.gt(r2) ? r1 : r2;
131         for (ElectricalPotential r : rn)
132         {
133             if (r.gt(maxr))
134             {
135                 maxr = r;
136             }
137         }
138         return maxr;
139     }
140 
141     /**
142      * Return the minimum value of two relative scalars.
143      * @param r1 ElectricalPotential; the first scalar
144      * @param r2 ElectricalPotential; the second scalar
145      * @return ElectricalPotential; the minimum value of two relative scalars
146      */
147     public static ElectricalPotential min(final ElectricalPotential r1, final ElectricalPotential r2)
148     {
149         return r1.lt(r2) ? r1 : r2;
150     }
151 
152     /**
153      * Return the minimum value of more than two relative scalars.
154      * @param r1 ElectricalPotential; the first scalar
155      * @param r2 ElectricalPotential; the second scalar
156      * @param rn ElectricalPotential...; the other scalars
157      * @return ElectricalPotential; the minimum value of more than two relative scalars
158      */
159     public static ElectricalPotential min(final ElectricalPotential r1, final ElectricalPotential r2,
160             final ElectricalPotential... rn)
161     {
162         ElectricalPotential minr = r1.lt(r2) ? r1 : r2;
163         for (ElectricalPotential r : rn)
164         {
165             if (r.lt(minr))
166             {
167                 minr = r;
168             }
169         }
170         return minr;
171     }
172 
173     /**
174      * Returns a ElectricalPotential representation of a textual representation of a value with a unit. The String
175      * representation that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the
176      * unit. Spaces are allowed, but not required, between the value and the unit.
177      * @param text String; the textual representation to parse into a ElectricalPotential
178      * @return ElectricalPotential; the Scalar representation of the value in its unit
179      * @throws IllegalArgumentException when the text cannot be parsed
180      * @throws NullPointerException when the text argument is null
181      */
182     public static ElectricalPotential valueOf(final String text)
183     {
184         Throw.whenNull(text, "Error parsing ElectricalPotential: text to parse is null");
185         Throw.when(text.length() == 0, IllegalArgumentException.class,
186                 "Error parsing ElectricalPotential: empty text to parse");
187         try
188         {
189             NumberParser numberParser = new NumberParser().lenient().trailing();
190             double d = numberParser.parseDouble(text);
191             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
192             ElectricalPotentialUnit unit = ElectricalPotentialUnit.BASE.getUnitByAbbreviation(unitString);
193             if (unit == null)
194                 throw new IllegalArgumentException("Unit " + unitString + " not found");
195             return new ElectricalPotential(d, unit);
196         }
197         catch (Exception exception)
198         {
199             throw new IllegalArgumentException("Error parsing ElectricalPotential from " + text + " using Locale "
200                     + Locale.getDefault(Locale.Category.FORMAT), exception);
201         }
202     }
203 
204     /**
205      * Returns a ElectricalPotential based on a value and the textual representation of the unit, which can be localized.
206      * @param value double; the value to use
207      * @param unitString String; the textual representation of the unit
208      * @return ElectricalPotential; the Scalar representation of the value in its unit
209      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
210      * @throws NullPointerException when the unitString argument is null
211      */
212     public static ElectricalPotential of(final double value, final String unitString)
213     {
214         Throw.whenNull(unitString, "Error parsing ElectricalPotential: unitString is null");
215         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
216                 "Error parsing ElectricalPotential: empty unitString");
217         ElectricalPotentialUnit unit = ElectricalPotentialUnit.BASE.getUnitByAbbreviation(unitString);
218         if (unit != null)
219         {
220             return new ElectricalPotential(value, unit);
221         }
222         throw new IllegalArgumentException("Error parsing ElectricalPotential with unit " + unitString);
223     }
224 
225     /**
226      * Calculate the division of ElectricalPotential and ElectricalPotential, which results in a Dimensionless scalar.
227      * @param v ElectricalPotential; scalar
228      * @return Dimensionless; scalar as a division of ElectricalPotential and ElectricalPotential
229      */
230     public final Dimensionless divide(final ElectricalPotential v)
231     {
232         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
233     }
234 
235     /**
236      * Calculate the multiplication of ElectricalPotential and ElectricalCurrent, which results in a Power scalar.
237      * @param v ElectricalPotential; scalar
238      * @return Power; scalar as a multiplication of ElectricalPotential and ElectricalCurrent
239      */
240     public final Power times(final ElectricalCurrent v)
241     {
242         return new Power(this.si * v.si, PowerUnit.SI);
243     }
244 
245     /**
246      * Calculate the division of ElectricalPotential and ElectricalCurrent, which results in a ElectricalResistance scalar.
247      * @param v ElectricalPotential; scalar
248      * @return ElectricalResistance; scalar as a division of ElectricalPotential and ElectricalCurrent
249      */
250     public final ElectricalResistance divide(final ElectricalCurrent v)
251     {
252         return new ElectricalResistance(this.si / v.si, ElectricalResistanceUnit.SI);
253     }
254 
255     /**
256      * Calculate the division of ElectricalPotential and ElectricalResistance, which results in a ElectricalCurrent scalar.
257      * @param v ElectricalPotential; scalar
258      * @return ElectricalCurrent; scalar as a division of ElectricalPotential and ElectricalResistance
259      */
260     public final ElectricalCurrent divide(final ElectricalResistance v)
261     {
262         return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
263     }
264 
265     /**
266      * Calculate the multiplication of ElectricalPotential and Duration, which results in a MagneticFlux scalar.
267      * @param v ElectricalPotential; scalar
268      * @return MagneticFlux; scalar as a multiplication of ElectricalPotential and Duration
269      */
270     public final MagneticFlux times(final Duration v)
271     {
272         return new MagneticFlux(this.si * v.si, MagneticFluxUnit.SI);
273     }
274 
275     /** {@inheritDoc} */
276     @Override
277     public SIScalar reciprocal()
278     {
279         return DoubleScalar.divide(Dimensionless.ONE, this);
280     }
281 
282 }