View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DimensionlessUnit;
6   import org.djunits.unit.ForceUnit;
7   import org.djunits.unit.FrequencyUnit;
8   import org.djunits.unit.LengthUnit;
9   import org.djunits.unit.LinearDensityUnit;
10  import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
11  import org.djutils.base.NumberParser;
12  import org.djutils.exceptions.Throw;
13  
14  import jakarta.annotation.Generated;
15  
16  /**
17   * Easy access methods for the FloatLinearDensity FloatScalar, which is relative by definition.
18   * <p>
19   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
20   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
21   * </p>
22   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
23   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
24   */
25  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
26  public class FloatLinearDensity extends FloatScalarRel<LinearDensityUnit, FloatLinearDensity>
27  {
28      /** */
29      private static final long serialVersionUID = 20150901L;
30  
31      /** Constant with value zero. */
32      public static final FloatLinearDensity ZERO = new FloatLinearDensity(0.0f, LinearDensityUnit.SI);
33  
34      /** Constant with value one. */
35      public static final FloatLinearDensity ONE = new FloatLinearDensity(1.0f, LinearDensityUnit.SI);
36  
37      /** Constant with value NaN. */
38      @SuppressWarnings("checkstyle:constantname")
39      public static final FloatLinearDensity NaN = new FloatLinearDensity(Float.NaN, LinearDensityUnit.SI);
40  
41      /** Constant with value POSITIVE_INFINITY. */
42      public static final FloatLinearDensity POSITIVE_INFINITY =
43              new FloatLinearDensity(Float.POSITIVE_INFINITY, LinearDensityUnit.SI);
44  
45      /** Constant with value NEGATIVE_INFINITY. */
46      public static final FloatLinearDensity NEGATIVE_INFINITY =
47              new FloatLinearDensity(Float.NEGATIVE_INFINITY, LinearDensityUnit.SI);
48  
49      /** Constant with value MAX_VALUE. */
50      public static final FloatLinearDensity POS_MAXVALUE = new FloatLinearDensity(Float.MAX_VALUE, LinearDensityUnit.SI);
51  
52      /** Constant with value -MAX_VALUE. */
53      public static final FloatLinearDensity NEG_MAXVALUE = new FloatLinearDensity(-Float.MAX_VALUE, LinearDensityUnit.SI);
54  
55      /**
56       * Construct FloatLinearDensity scalar.
57       * @param value float; the float value
58       * @param unit unit for the float value
59       */
60      public FloatLinearDensity(final float value, final LinearDensityUnit unit)
61      {
62          super(value, unit);
63      }
64  
65      /**
66       * Construct FloatLinearDensity scalar.
67       * @param value Scalar from which to construct this instance
68       */
69      public FloatLinearDensity(final FloatLinearDensity value)
70      {
71          super(value);
72      }
73  
74      /**
75       * Construct FloatLinearDensity scalar using a double value.
76       * @param value double; the double value
77       * @param unit unit for the resulting float value
78       */
79      public FloatLinearDensity(final double value, final LinearDensityUnit unit)
80      {
81          super((float) value, unit);
82      }
83  
84      @Override
85      public final FloatLinearDensity instantiateRel(final float value, final LinearDensityUnit unit)
86      {
87          return new FloatLinearDensity(value, unit);
88      }
89  
90      /**
91       * Construct FloatLinearDensity scalar.
92       * @param value float; the float value in SI units
93       * @return the new scalar with the SI value
94       */
95      public static final FloatLinearDensity instantiateSI(final float value)
96      {
97          return new FloatLinearDensity(value, LinearDensityUnit.SI);
98      }
99  
100     /**
101      * Interpolate between two values.
102      * @param zero the low value
103      * @param one the high value
104      * @param ratio double; the ratio between 0 and 1, inclusive
105      * @return a Scalar at the ratio between
106      */
107     public static FloatLinearDensity interpolate(final FloatLinearDensity zero, final FloatLinearDensity one, final float ratio)
108     {
109         return new FloatLinearDensity(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
110                 zero.getDisplayUnit());
111     }
112 
113     /**
114      * Return the maximum value of two relative scalars.
115      * @param r1 the first scalar
116      * @param r2 the second scalar
117      * @return the maximum value of two relative scalars
118      */
119     public static FloatLinearDensity max(final FloatLinearDensity r1, final FloatLinearDensity r2)
120     {
121         return r1.gt(r2) ? r1 : r2;
122     }
123 
124     /**
125      * Return the maximum value of more than two relative scalars.
126      * @param r1 the first scalar
127      * @param r2 the second scalar
128      * @param rn the other scalars
129      * @return the maximum value of more than two relative scalars
130      */
131     public static FloatLinearDensity max(final FloatLinearDensity r1, final FloatLinearDensity r2,
132             final FloatLinearDensity... rn)
133     {
134         FloatLinearDensity maxr = r1.gt(r2) ? r1 : r2;
135         for (FloatLinearDensity r : rn)
136         {
137             if (r.gt(maxr))
138             {
139                 maxr = r;
140             }
141         }
142         return maxr;
143     }
144 
145     /**
146      * Return the minimum value of two relative scalars.
147      * @param r1 the first scalar
148      * @param r2 the second scalar
149      * @return the minimum value of two relative scalars
150      */
151     public static FloatLinearDensity min(final FloatLinearDensity r1, final FloatLinearDensity r2)
152     {
153         return r1.lt(r2) ? r1 : r2;
154     }
155 
156     /**
157      * Return the minimum value of more than two relative scalars.
158      * @param r1 the first scalar
159      * @param r2 the second scalar
160      * @param rn the other scalars
161      * @return the minimum value of more than two relative scalars
162      */
163     public static FloatLinearDensity min(final FloatLinearDensity r1, final FloatLinearDensity r2,
164             final FloatLinearDensity... rn)
165     {
166         FloatLinearDensity minr = r1.lt(r2) ? r1 : r2;
167         for (FloatLinearDensity r : rn)
168         {
169             if (r.lt(minr))
170             {
171                 minr = r;
172             }
173         }
174         return minr;
175     }
176 
177     /**
178      * Returns a FloatLinearDensity representation of a textual representation of a value with a unit. The String representation
179      * that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
180      * are allowed, but not required, between the value and the unit.
181      * @param text String; the textual representation to parse into a FloatLinearDensity
182      * @return FloatLinearDensity; the Scalar representation of the value in its unit
183      * @throws IllegalArgumentException when the text cannot be parsed
184      * @throws NullPointerException when the text argument is null
185      */
186     public static FloatLinearDensity valueOf(final String text)
187     {
188         Throw.whenNull(text, "Error parsing FloatLinearDensity: text to parse is null");
189         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatLinearDensity: empty text to parse");
190         try
191         {
192             NumberParser numberParser = new NumberParser().lenient().trailing();
193             float f = numberParser.parseFloat(text);
194             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
195             LinearDensityUnit unit = LinearDensityUnit.BASE.getUnitByAbbreviation(unitString);
196             if (unit == null)
197                 throw new IllegalArgumentException("Unit " + unitString + " not found");
198             return new FloatLinearDensity(f, unit);
199         }
200         catch (Exception exception)
201         {
202             throw new IllegalArgumentException("Error parsing FloatLinearDensity from " + text + " using Locale "
203                     + Locale.getDefault(Locale.Category.FORMAT), exception);
204         }
205     }
206 
207     /**
208      * Returns a FloatLinearDensity based on a value and the textual representation of the unit, which can be localized.
209      * @param value double; the value to use
210      * @param unitString String; the textual representation of the unit
211      * @return FloatLinearDensity; the Scalar representation of the value in its unit
212      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
213      * @throws NullPointerException when the unitString argument is null
214      */
215     public static FloatLinearDensity of(final float value, final String unitString)
216     {
217         Throw.whenNull(unitString, "Error parsing FloatLinearDensity: unitString is null");
218         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
219                 "Error parsing FloatLinearDensity: empty unitString");
220         LinearDensityUnit unit = LinearDensityUnit.BASE.getUnitByAbbreviation(unitString);
221         if (unit != null)
222         {
223             return new FloatLinearDensity(value, unit);
224         }
225         throw new IllegalArgumentException("Error parsing FloatLinearDensity with unit " + unitString);
226     }
227 
228     /**
229      * Calculate the division of FloatLinearDensity and FloatLinearDensity, which results in a FloatDimensionless scalar.
230      * @param v FloatLinearDensity; scalar
231      * @return FloatDimensionless; scalar as a division of FloatLinearDensity and FloatLinearDensity
232      */
233     public final FloatDimensionless divide(final FloatLinearDensity v)
234     {
235         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
236     }
237 
238     /**
239      * Calculate the multiplication of FloatLinearDensity and FloatLength, which results in a FloatDimensionless scalar.
240      * @param v FloatLinearDensity; scalar
241      * @return FloatDimensionless; scalar as a multiplication of FloatLinearDensity and FloatLength
242      */
243     public final FloatDimensionless times(final FloatLength v)
244     {
245         return new FloatDimensionless(this.si * v.si, DimensionlessUnit.SI);
246     }
247 
248     /**
249      * Calculate the multiplication of FloatLinearDensity and FloatArea, which results in a FloatLength scalar.
250      * @param v FloatLinearDensity; scalar
251      * @return FloatLength; scalar as a multiplication of FloatLinearDensity and FloatArea
252      */
253     public final FloatLength times(final FloatArea v)
254     {
255         return new FloatLength(this.si * v.si, LengthUnit.SI);
256     }
257 
258     /**
259      * Calculate the multiplication of FloatLinearDensity and FloatEnergy, which results in a FloatForce scalar.
260      * @param v FloatLinearDensity; scalar
261      * @return FloatForce; scalar as a multiplication of FloatLinearDensity and FloatEnergy
262      */
263     public final FloatForce times(final FloatEnergy v)
264     {
265         return new FloatForce(this.si * v.si, ForceUnit.SI);
266     }
267 
268     /**
269      * Calculate the multiplication of FloatLinearDensity and FloatSpeed, which results in a FloatFrequency scalar.
270      * @param v FloatLinearDensity; scalar
271      * @return FloatFrequency; scalar as a multiplication of FloatLinearDensity and FloatSpeed
272      */
273     public final FloatFrequency times(final FloatSpeed v)
274     {
275         return new FloatFrequency(this.si * v.si, FrequencyUnit.SI);
276     }
277 
278     @Override
279     public FloatLength reciprocal()
280     {
281         return FloatLength.instantiateSI(1.0f / this.si);
282     }
283 
284 }