View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.DurationUnit;
8   import org.djunits.unit.EnergyUnit;
9   import org.djunits.unit.LengthUnit;
10  import org.djunits.unit.LinearDensityUnit;
11  import org.djunits.unit.MomentumUnit;
12  import org.djunits.unit.PositionUnit;
13  import org.djunits.unit.SpeedUnit;
14  import org.djunits.unit.VolumeUnit;
15  import org.djunits.value.vfloat.scalar.base.FloatScalarRelWithAbs;
16  import org.djutils.base.NumberParser;
17  import org.djutils.exceptions.Throw;
18  
19  import jakarta.annotation.Generated;
20  
21  /**
22   * Easy access methods for the FloatLength FloatScalar.
23   * <p>
24   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
25   * All rights reserved. <br>
26   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
27   * </p>
28   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
29   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
30   */
31  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
32  public class FloatLength extends FloatScalarRelWithAbs<PositionUnit, FloatPosition, LengthUnit, FloatLength>
33  {
34      /** */
35      private static final long serialVersionUID = 20150901L;
36  
37      /** Constant with value zero. */
38      public static final FloatLength ZERO = new FloatLength(0.0f, LengthUnit.SI);
39  
40      /** Constant with value one. */
41      public static final FloatLength ONE = new FloatLength(1.0f, LengthUnit.SI);
42  
43      /** Constant with value NaN. */
44      @SuppressWarnings("checkstyle:constantname")
45      public static final FloatLength NaN = new FloatLength(Float.NaN, LengthUnit.SI);
46  
47      /** Constant with value POSITIVE_INFINITY. */
48      public static final FloatLength POSITIVE_INFINITY = new FloatLength(Float.POSITIVE_INFINITY, LengthUnit.SI);
49  
50      /** Constant with value NEGATIVE_INFINITY. */
51      public static final FloatLength NEGATIVE_INFINITY = new FloatLength(Float.NEGATIVE_INFINITY, LengthUnit.SI);
52  
53      /** Constant with value MAX_VALUE. */
54      public static final FloatLength POS_MAXVALUE = new FloatLength(Float.MAX_VALUE, LengthUnit.SI);
55  
56      /** Constant with value -MAX_VALUE. */
57      public static final FloatLength NEG_MAXVALUE = new FloatLength(-Float.MAX_VALUE, LengthUnit.SI);
58  
59      /**
60       * Construct FloatLength scalar.
61       * @param value float; the float value
62       * @param unit LengthUnit; unit for the float value
63       */
64      public FloatLength(final float value, final LengthUnit unit)
65      {
66          super(value, unit);
67      }
68  
69      /**
70       * Construct FloatLength scalar.
71       * @param value FloatLength; Scalar from which to construct this instance
72       */
73      public FloatLength(final FloatLength value)
74      {
75          super(value);
76      }
77  
78      /**
79       * Construct FloatLength scalar using a double value.
80       * @param value double; the double value
81       * @param unit LengthUnit; unit for the resulting float value
82       */
83      public FloatLength(final double value, final LengthUnit unit)
84      {
85          super((float) value, unit);
86      }
87  
88      @Override
89      public final FloatLength instantiateRel(final float value, final LengthUnit unit)
90      {
91          return new FloatLength(value, unit);
92      }
93  
94      /**
95       * Construct FloatLength scalar.
96       * @param value float; the float value in SI units
97       * @return FloatLength; the new scalar with the SI value
98       */
99      public static final FloatLength instantiateSI(final float value)
100     {
101         return new FloatLength(value, LengthUnit.SI);
102     }
103 
104     @Override
105     public final FloatPosition instantiateAbs(final float value, final PositionUnit unit)
106     {
107         return new FloatPosition(value, unit);
108     }
109 
110     /**
111      * Interpolate between two values.
112      * @param zero FloatLength; the low value
113      * @param one FloatLength; the high value
114      * @param ratio double; the ratio between 0 and 1, inclusive
115      * @return FloatLength; a Scalar at the ratio between
116      */
117     public static FloatLength interpolate(final FloatLength zero, final FloatLength one, final float ratio)
118     {
119         return new FloatLength(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
120                 zero.getDisplayUnit());
121     }
122 
123     /**
124      * Return the maximum value of two relative scalars.
125      * @param r1 FloatLength; the first scalar
126      * @param r2 FloatLength; the second scalar
127      * @return FloatLength; the maximum value of two relative scalars
128      */
129     public static FloatLength max(final FloatLength r1, final FloatLength r2)
130     {
131         return r1.gt(r2) ? r1 : r2;
132     }
133 
134     /**
135      * Return the maximum value of more than two relative scalars.
136      * @param r1 FloatLength; the first scalar
137      * @param r2 FloatLength; the second scalar
138      * @param rn FloatLength...; the other scalars
139      * @return FloatLength; the maximum value of more than two relative scalars
140      */
141     public static FloatLength max(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
142     {
143         FloatLength maxr = r1.gt(r2) ? r1 : r2;
144         for (FloatLength r : rn)
145         {
146             if (r.gt(maxr))
147             {
148                 maxr = r;
149             }
150         }
151         return maxr;
152     }
153 
154     /**
155      * Return the minimum value of two relative scalars.
156      * @param r1 FloatLength; the first scalar
157      * @param r2 FloatLength; the second scalar
158      * @return FloatLength; the minimum value of two relative scalars
159      */
160     public static FloatLength min(final FloatLength r1, final FloatLength r2)
161     {
162         return r1.lt(r2) ? r1 : r2;
163     }
164 
165     /**
166      * Return the minimum value of more than two relative scalars.
167      * @param r1 FloatLength; the first scalar
168      * @param r2 FloatLength; the second scalar
169      * @param rn FloatLength...; the other scalars
170      * @return FloatLength; the minimum value of more than two relative scalars
171      */
172     public static FloatLength min(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
173     {
174         FloatLength minr = r1.lt(r2) ? r1 : r2;
175         for (FloatLength r : rn)
176         {
177             if (r.lt(minr))
178             {
179                 minr = r;
180             }
181         }
182         return minr;
183     }
184 
185     /**
186      * Returns a FloatLength representation of a textual representation of a value with a unit. The String representation that
187      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
188      * allowed, but not required, between the value and the unit.
189      * @param text String; the textual representation to parse into a FloatLength
190      * @return FloatLength; the Scalar representation of the value in its unit
191      * @throws IllegalArgumentException when the text cannot be parsed
192      * @throws NullPointerException when the text argument is null
193      */
194     public static FloatLength valueOf(final String text)
195     {
196         Throw.whenNull(text, "Error parsing FloatLength: text to parse is null");
197         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatLength: empty text to parse");
198         try
199         {
200             NumberParser numberParser = new NumberParser().lenient().trailing();
201             float f = numberParser.parseFloat(text);
202             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
203             LengthUnit unit = LengthUnit.BASE.getUnitByAbbreviation(unitString);
204             if (unit == null)
205                 throw new IllegalArgumentException("Unit " + unitString + " not found");
206             return new FloatLength(f, unit);
207         }
208         catch (Exception exception)
209         {
210             throw new IllegalArgumentException(
211                     "Error parsing FloatLength from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
212                     exception);
213         }
214     }
215 
216     /**
217      * Returns a FloatLength based on a value and the textual representation of the unit, which can be localized.
218      * @param value double; the value to use
219      * @param unitString String; the textual representation of the unit
220      * @return FloatLength; the Scalar representation of the value in its unit
221      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
222      * @throws NullPointerException when the unitString argument is null
223      */
224     public static FloatLength of(final float value, final String unitString)
225     {
226         Throw.whenNull(unitString, "Error parsing FloatLength: unitString is null");
227         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatLength: empty unitString");
228         LengthUnit unit = LengthUnit.BASE.getUnitByAbbreviation(unitString);
229         if (unit != null)
230         {
231             return new FloatLength(value, unit);
232         }
233         throw new IllegalArgumentException("Error parsing FloatLength with unit " + unitString);
234     }
235 
236     /**
237      * Calculate the division of FloatLength and FloatLength, which results in a FloatDimensionless scalar.
238      * @param v FloatLength; scalar
239      * @return FloatDimensionless; scalar as a division of FloatLength and FloatLength
240      */
241     public final FloatDimensionless divide(final FloatLength v)
242     {
243         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
244     }
245 
246     /**
247      * Calculate the multiplication of FloatLength and FloatLinearDensity, which results in a FloatDimensionless scalar.
248      * @param v FloatLength; scalar
249      * @return FloatDimensionless; scalar as a multiplication of FloatLength and FloatLinearDensity
250      */
251     public final FloatDimensionless times(final FloatLinearDensity v)
252     {
253         return new FloatDimensionless(this.si * v.si, DimensionlessUnit.SI);
254     }
255 
256     /**
257      * Calculate the multiplication of FloatLength and FloatLength, which results in a FloatArea scalar.
258      * @param v FloatLength; scalar
259      * @return FloatArea; scalar as a multiplication of FloatLength and FloatLength
260      */
261     public final FloatArea times(final FloatLength v)
262     {
263         return new FloatArea(this.si * v.si, AreaUnit.SI);
264     }
265 
266     /**
267      * Calculate the division of FloatLength and FloatLinearDensity, which results in a FloatArea scalar.
268      * @param v FloatLength; scalar
269      * @return FloatArea; scalar as a division of FloatLength and FloatLinearDensity
270      */
271     public final FloatArea divide(final FloatLinearDensity v)
272     {
273         return new FloatArea(this.si / v.si, AreaUnit.SI);
274     }
275 
276     /**
277      * Calculate the division of FloatLength and FloatArea, which results in a FloatLinearDensity scalar.
278      * @param v FloatLength; scalar
279      * @return FloatLinearDensity; scalar as a division of FloatLength and FloatArea
280      */
281     public final FloatLinearDensity divide(final FloatArea v)
282     {
283         return new FloatLinearDensity(this.si / v.si, LinearDensityUnit.SI);
284     }
285 
286     /**
287      * Calculate the multiplication of FloatLength and FloatArea, which results in a FloatVolume scalar.
288      * @param v FloatLength; scalar
289      * @return FloatVolume; scalar as a multiplication of FloatLength and FloatArea
290      */
291     public final FloatVolume times(final FloatArea v)
292     {
293         return new FloatVolume(this.si * v.si, VolumeUnit.SI);
294     }
295 
296     /**
297      * Calculate the multiplication of FloatLength and FloatForce, which results in a FloatEnergy scalar.
298      * @param v FloatLength; scalar
299      * @return FloatEnergy; scalar as a multiplication of FloatLength and FloatForce
300      */
301     public final FloatEnergy times(final FloatForce v)
302     {
303         return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
304     }
305 
306     /**
307      * Calculate the multiplication of FloatLength and FloatFrequency, which results in a FloatSpeed scalar.
308      * @param v FloatLength; scalar
309      * @return FloatSpeed; scalar as a multiplication of FloatLength and FloatFrequency
310      */
311     public final FloatSpeed times(final FloatFrequency v)
312     {
313         return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
314     }
315 
316     /**
317      * Calculate the division of FloatLength and FloatDuration, which results in a FloatSpeed scalar.
318      * @param v FloatLength; scalar
319      * @return FloatSpeed; scalar as a division of FloatLength and FloatDuration
320      */
321     public final FloatSpeed divide(final FloatDuration v)
322     {
323         return new FloatSpeed(this.si / v.si, SpeedUnit.SI);
324     }
325 
326     /**
327      * Calculate the division of FloatLength and FloatSpeed, which results in a FloatDuration scalar.
328      * @param v FloatLength; scalar
329      * @return FloatDuration; scalar as a division of FloatLength and FloatSpeed
330      */
331     public final FloatDuration divide(final FloatSpeed v)
332     {
333         return new FloatDuration(this.si / v.si, DurationUnit.SI);
334     }
335 
336     /**
337      * Calculate the multiplication of FloatLength and FloatFlowMass, which results in a FloatMomentum scalar.
338      * @param v FloatLength; scalar
339      * @return FloatMomentum; scalar as a multiplication of FloatLength and FloatFlowMass
340      */
341     public final FloatMomentum times(final FloatFlowMass v)
342     {
343         return new FloatMomentum(this.si * v.si, MomentumUnit.SI);
344     }
345 
346     @Override
347     public FloatLinearDensity reciprocal()
348     {
349         return FloatLinearDensity.instantiateSI(1.0f / this.si);
350     }
351 
352 }