View Javadoc
1   package org.djunits.value.vfloat.vector;
2   
3   import java.util.List;
4   import java.util.Map;
5   
6   import org.djunits.unit.FlowMassUnit;
7   import org.djunits.unit.scale.IdentityScale;
8   import org.djunits.value.storage.StorageType;
9   import org.djunits.value.vfloat.scalar.FloatFlowMass;
10  import org.djunits.value.vfloat.vector.base.FloatVectorRel;
11  import org.djunits.value.vfloat.vector.data.FloatVectorData;
12  
13  import jakarta.annotation.Generated;
14  
15  /**
16   * Immutable Float FloatFlowMassVector, a vector of values with a FlowMassUnit.
17   * <p>
18   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
19   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
20   * </p>
21   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
22   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
23   */
24  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
25  public class FloatFlowMassVector extends FloatVectorRel<FlowMassUnit, FloatFlowMass, FloatFlowMassVector>
26  
27  {
28      /** */
29      private static final long serialVersionUID = 20190905L;
30  
31      /**
32       * Construct a FloatFlowMassVector from an internal data object.
33       * @param data FloatVectorData; the internal data object for the vector
34       * @param displayUnit FlowMassUnit; the display unit of the vector data
35       */
36      public FloatFlowMassVector(final FloatVectorData data, final FlowMassUnit displayUnit)
37      {
38          super(data, displayUnit);
39      }
40  
41      /* CONSTRUCTORS WITH float[] */
42  
43      /**
44       * Construct a FloatFlowMassVector from a float[] object. The Float values are expressed in the displayUnit, and will be
45       * printed using the displayUnit.
46       * @param data float[]; the data for the vector, expressed in the displayUnit
47       * @param displayUnit FlowMassUnit; the unit of the values in the data array, and display unit when printing
48       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
49       */
50      public FloatFlowMassVector(final float[] data, final FlowMassUnit displayUnit, final StorageType storageType)
51      {
52          this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
53      }
54  
55      /**
56       * Construct a FloatFlowMassVector from a float[] object. The Float values are expressed in the displayUnit. Assume that the
57       * StorageType is DENSE since we offer the data as an array.
58       * @param data float[]; the data for the vector
59       * @param displayUnit FlowMassUnit; the unit of the values in the data array, and display unit when printing
60       */
61      public FloatFlowMassVector(final float[] data, final FlowMassUnit displayUnit)
62      {
63          this(data, displayUnit, StorageType.DENSE);
64      }
65  
66      /**
67       * Construct a FloatFlowMassVector from a float[] object with SI-unit values.
68       * @param data float[]; the data for the vector, in SI units
69       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
70       */
71      public FloatFlowMassVector(final float[] data, final StorageType storageType)
72      {
73          this(data, FlowMassUnit.SI, storageType);
74      }
75  
76      /**
77       * Construct a FloatFlowMassVector from a float[] object with SI-unit values. Assume that the StorageType is DENSE since we
78       * offer the data as an array.
79       * @param data float[]; the data for the vector, in SI units
80       */
81      public FloatFlowMassVector(final float[] data)
82      {
83          this(data, StorageType.DENSE);
84      }
85  
86      /* CONSTRUCTORS WITH FloatFlowMass[] */
87  
88      /**
89       * Construct a FloatFlowMassVector from an array of FloatFlowMass objects. The FloatFlowMass values are each expressed in
90       * their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
91       * @param data FloatFlowMass[]; the data for the vector
92       * @param displayUnit FlowMassUnit; the display unit of the values when printing
93       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
94       */
95      public FloatFlowMassVector(final FloatFlowMass[] data, final FlowMassUnit displayUnit, final StorageType storageType)
96      {
97          this(FloatVectorData.instantiate(data, storageType), displayUnit);
98      }
99  
100     /**
101      * Construct a FloatFlowMassVector from an array of FloatFlowMass objects. The FloatFlowMass values are each expressed in
102      * their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that
103      * the StorageType is DENSE since we offer the data as an array.
104      * @param data FloatFlowMass[]; the data for the vector
105      * @param displayUnit FlowMassUnit; the display unit of the values when printing
106      */
107     public FloatFlowMassVector(final FloatFlowMass[] data, final FlowMassUnit displayUnit)
108     {
109         this(data, displayUnit, StorageType.DENSE);
110     }
111 
112     /**
113      * Construct a FloatFlowMassVector from an array of FloatFlowMass objects. The FloatFlowMass values are each expressed in
114      * their own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer
115      * the data as an array.
116      * @param data FloatFlowMass[]; the data for the vector
117      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
118      */
119     public FloatFlowMassVector(final FloatFlowMass[] data, final StorageType storageType)
120     {
121         this(data, FlowMassUnit.SI, storageType);
122     }
123 
124     /**
125      * Construct a FloatFlowMassVector from an array of FloatFlowMass objects. The FloatFlowMass values are each expressed in
126      * their own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that the
127      * StorageType is DENSE since we offer the data as an array.
128      * @param data FloatFlowMass[]; the data for the vector
129      */
130     public FloatFlowMassVector(final FloatFlowMass[] data)
131     {
132         this(data, StorageType.DENSE);
133     }
134 
135     /* CONSTRUCTORS WITH List<Float> or List<FlowMass> */
136 
137     /**
138      * Construct a FloatFlowMassVector from a list of Number objects or a list of FloatFlowMass objects. Note that the
139      * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or
140      * FloatFlowMass objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values
141      * in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatFlowMass
142      * objects, each FloatFlowMass has its own unit, and the displayUnit is just used for printing. The values but will always
143      * be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
144      * @param data List&lt;Float&gt; or List&lt;FlowMass&gt;; the data for the vector
145      * @param displayUnit FlowMassUnit; the display unit of the vector data, and the unit of the data points when the data is
146      *            expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
147      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
148      */
149     public FloatFlowMassVector(final List<? extends Number> data, final FlowMassUnit displayUnit, final StorageType storageType)
150     {
151         this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType)
152                 : data.get(0) instanceof FloatFlowMass ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType)
153                         : FloatVectorData.instantiate(data, displayUnit.getScale(), storageType),
154                 displayUnit);
155     }
156 
157     /**
158      * Construct a FloatFlowMassVector from a list of Number objects or a list of FloatFlowMass objects. Note that the
159      * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or
160      * FloatFlowMass objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values
161      * in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatFlowMass
162      * objects, each FloatFlowMass has its own unit, and the displayUnit is just used for printing. The values but will always
163      * be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume
164      * the storage type is DENSE since we offer the data as a List.
165      * @param data List&lt;Float&gt; or List&lt;FlowMass&gt;; the data for the vector
166      * @param displayUnit FlowMassUnit; the display unit of the vector data, and the unit of the data points when the data is
167      *            expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
168      */
169     public FloatFlowMassVector(final List<? extends Number> data, final FlowMassUnit displayUnit)
170     {
171         this(data, displayUnit, StorageType.DENSE);
172     }
173 
174     /**
175      * Construct a FloatFlowMassVector from a list of Number objects or a list of FloatFlowMass objects. When data contains
176      * numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatFlowMass objects,
177      * they each have their own unit, but will be printed using SI units or base units. The values but will always be internally
178      * stored as SI values or base values, and expressed using the display unit or base unit when printing.
179      * @param data List&lt;Float&gt; or List&lt;FlowMass&gt;; the data for the vector
180      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
181      */
182     public FloatFlowMassVector(final List<? extends Number> data, final StorageType storageType)
183     {
184         this(data, FlowMassUnit.SI, storageType);
185     }
186 
187     /**
188      * Construct a FloatFlowMassVector from a list of Number objects or a list of FloatFlowMass objects. When data contains
189      * numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatFlowMass objects,
190      * they each have their own unit, but will be printed using SI units or base units. The values but will always be internally
191      * stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage
192      * type is DENSE since we offer the data as a List.
193      * @param data List&lt;Float&gt; or List&lt;FlowMass&gt;; the data for the vector
194      */
195     public FloatFlowMassVector(final List<? extends Number> data)
196     {
197         this(data, StorageType.DENSE);
198     }
199 
200     /* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatFlowMass> */
201 
202     /**
203      * Construct a FloatFlowMassVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
204      * to of FloatFlowMass objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
205      * the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
206      * different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatFlowMass objects. In
207      * case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as
208      * well as the unit in which they will be printed. In case the map contains FloatFlowMass objects, each FloatFlowMass has
209      * its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values
210      * or base values, and expressed using the display unit or base unit when printing.
211      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatFlowMass&gt;; the data for the vector
212      * @param size int; the size off the vector, i.e., the highest index
213      * @param displayUnit FlowMassUnit; the display unit of the vector data, and the unit of the data points when the data is
214      *            expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
215      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
216      */
217     public FloatFlowMassVector(final Map<Integer, ? extends Number> data, final int size, final FlowMassUnit displayUnit,
218             final StorageType storageType)
219     {
220         this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
221                 : data.values().iterator().next() instanceof FloatFlowMass
222                         ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
223                         : FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
224                 displayUnit);
225     }
226 
227     /**
228      * Construct a FloatFlowMassVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
229      * to of FloatFlowMass objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
230      * the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
231      * different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatFlowMass objects. In
232      * case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as
233      * well as the unit in which they will be printed. In case the map contains FloatFlowMass objects, each FloatFlowMass has
234      * its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values
235      * or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since
236      * we offer the data as a Map.
237      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatFlowMass&gt;; the data for the vector
238      * @param size int; the size off the vector, i.e., the highest index
239      * @param displayUnit FlowMassUnit; the display unit of the vector data, and the unit of the data points when the data is
240      *            expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
241      */
242     public FloatFlowMassVector(final Map<Integer, ? extends Number> data, final int size, final FlowMassUnit displayUnit)
243     {
244         this(data, size, displayUnit, StorageType.SPARSE);
245     }
246 
247     /**
248      * Construct a FloatFlowMassVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
249      * to of FloatFlowMass objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
250      * the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
251      * Float, assume that they are expressed using SI units. When the data consists of FloatFlowMass objects, they each have
252      * their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
253      * values or base values, and expressed using the display unit or base unit when printing.
254      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatFlowMass&gt;; the data for the vector
255      * @param size int; the size off the vector, i.e., the highest index
256      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
257      */
258     public FloatFlowMassVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
259     {
260         this(data, size, FlowMassUnit.SI, storageType);
261     }
262 
263     /**
264      * Construct a FloatFlowMassVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
265      * to of FloatFlowMass objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
266      * the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
267      * Float, assume that they are expressed using SI units. When the data consists of FloatFlowMass objects, they each have
268      * their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
269      * values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE
270      * since we offer the data as a Map.
271      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatFlowMass&gt;; the data for the vector
272      * @param size int; the size off the vector, i.e., the highest index
273      */
274     public FloatFlowMassVector(final Map<Integer, ? extends Number> data, final int size)
275     {
276         this(data, size, StorageType.SPARSE);
277     }
278 
279     /* ****************************** Other methods ****************************** */
280 
281     @Override
282     public Class<FloatFlowMass> getScalarClass()
283     {
284         return FloatFlowMass.class;
285     }
286 
287     @Override
288     public FloatFlowMassVector instantiateVector(final FloatVectorData fvd, final FlowMassUnit displayUnit)
289     {
290         return new FloatFlowMassVector(fvd, displayUnit);
291     }
292 
293     @Override
294     public FloatFlowMass instantiateScalarSI(final float valueSI, final FlowMassUnit displayUnit)
295     {
296         FloatFlowMass result = FloatFlowMass.instantiateSI(valueSI);
297         result.setDisplayUnit(displayUnit);
298         return result;
299     }
300 
301 }