public class Power extends DoubleScalar.Rel<PowerUnit> implements Relative
Copyright (c) 2013-2015 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
BSD-style license. See DJUNITS License.
$LastChangedDate: 2015-10-04 20:45:14 +0200 (Sun, 04 Oct 2015) $, @version $Revision: 85 $, by $Author: averbraeck $, initial
version Sep 5, 2015
DoubleScalar.Abs<U extends Unit<U>>, DoubleScalar.Rel<U extends Unit<U>>si| Constructor and Description |
|---|
Power(double value,
PowerUnit unit)
Construct Power scalar.
|
Power(DoubleScalar.Rel<PowerUnit> value)
Construct Power scalar.
|
| Modifier and Type | Method and Description |
|---|---|
Power |
abs()
Set the value(s) to their absolute value.
|
Power |
acos()
Set the value(s) to the arc cosine of the value(s); the resulting angle is in the range 0.0 through pi.
|
Power |
asin()
Set the value(s) to the arc sine of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
Power |
atan()
Set the value(s) to the arc tangent of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
Power |
cbrt()
Set the value(s) to the(ir) cube root.
|
Power |
ceil()
Set the value(s) to the smallest (closest to negative infinity) value(s) that are greater than or equal to the argument
and equal to a mathematical integer.
|
Power |
cos()
Set the value(s) to the trigonometric cosine of the value(s).
|
Power |
cosh()
Set the value(s) to the hyperbolic cosine of the value(s).
|
Power |
divideBy(double divisor)
Scale the value(s) by the inverse of a factor; i.e.
|
ElectricalPotential |
divideBy(ElectricalCurrent v)
Calculate the division of Power and ElectricalCurrent, which results in a ElectricalPotential scalar.
|
ElectricalCurrent |
divideBy(ElectricalPotential v)
Calculate the division of Power and ElectricalPotential, which results in a ElectricalCurrent scalar.
|
Frequency |
divideBy(Energy v)
Calculate the division of Power and Energy, which results in a Frequency scalar.
|
Speed |
divideBy(Force v)
Calculate the division of Power and Force, which results in a Speed scalar.
|
Energy |
divideBy(Frequency v)
Calculate the division of Power and Frequency, which results in a Energy scalar.
|
Dimensionless.Rel |
divideBy(Power v)
Calculate the division of Power and Power, which results in a Dimensionless scalar.
|
Force |
divideBy(Speed v)
Calculate the division of Power and Speed, which results in a Force scalar.
|
Power |
exp()
Set the value(s) to Euler's number e raised to the power of the value(s).
|
Power |
expm1()
Set the value(s) to Euler's number e raised to the power of the value(s) minus 1 (e^x - 1).
|
Power |
floor()
Set the value(s) to the largest (closest to positive infinity) value(s) that are less than or equal to the argument and
equal to a mathematical integer.
|
static Power |
interpolate(Power zero,
Power one,
double ratio)
Interpolate between two values.
|
Power |
inv()
Set the value(s) to the complement (1.0/x) of the value(s).
|
Power |
log()
Set the value(s) to the natural logarithm (base e) of the value(s).
|
Power |
log10()
Set the value(s) to the base 10 logarithm of the value(s).
|
Power |
log1p()
Set the value(s) to the natural logarithm of the sum of the value(s) and 1.
|
Power |
minus(Power v)
Relative scalar minus Relative scalar = Relative scalar.
|
Power |
multiplyBy(double factor)
Scale the value(s) by a factor.
|
Energy |
multiplyBy(Time.Rel v)
Calculate the multiplication of Power and Time, which results in a Energy scalar.
|
Power |
plus(Power v)
Relative scalar plus Relative scalar = Relative scalar.
|
Power |
pow(double x)
Set the value(s) to the value(s) raised to the power of the argument.
|
Power |
rint()
Set the value(s) to the value(s) that are closest in value to the argument and equal to a mathematical integer.
|
Power |
round()
Set the value(s) to the closest long to the argument with ties rounding up.
|
Power |
signum()
Set the value(s) to the signum function of the value(s); zero if the argument is zero, 1.0 if the argument is greater
than zero, -1.0 if the argument is less than zero.
|
Power |
sin()
Set the value(s) to the trigonometric sine of the value(s).
|
Power |
sinh()
Set the value(s) to the hyperbolic sine of the value(s).
|
Power |
sqrt()
Set the value(s) to the correctly rounded positive square root of the value(s).
|
Power |
tan()
Set the value(s) to the trigonometric tangent of the value(s).
|
Power |
tanh()
Set the value(s) to the hyperbolic tangent of the value(s).
|
Power |
toDegrees()
Set the value(s) to approximately equivalent angle(s) measured in degrees.
|
Power |
toRadians()
Set the value(s) to approximately equivalent angle(s) measured in radians.
|
compareTo, eq, ge, getSI, gt, le, lt, minus, ne, plusdivide, divide, doubleValue, equals, floatValue, getInUnit, getInUnit, hashCode, interpolate, interpolate, intValue, longValue, minus, minus, minus, multiply, multiply, plus, plus, plus, toString, toString, toString, toStringexpressAsSIUnit, expressAsSpecifiedUnit, getUnit, isAbsolute, isRelativebyteValue, shortValuepublic Power(double value,
PowerUnit unit)
value - double valueunit - unit for the double valuepublic Power(DoubleScalar.Rel<PowerUnit> value)
value - Scalar from which to construct this instancepublic static Power interpolate(Power zero, Power one, double ratio)
zero - the low valueone - the high valueratio - the ratio between 0 and 1, inclusivepublic final Power abs()
abs in interface MathFunctions<DoubleScalar<PowerUnit>>abs in class DoubleScalar.Rel<PowerUnit>public final Power acos()
acos in interface MathFunctions<DoubleScalar<PowerUnit>>acos in class DoubleScalar.Rel<PowerUnit>public final Power asin()
asin in interface MathFunctions<DoubleScalar<PowerUnit>>asin in class DoubleScalar.Rel<PowerUnit>public final Power atan()
atan in interface MathFunctions<DoubleScalar<PowerUnit>>atan in class DoubleScalar.Rel<PowerUnit>public final Power cbrt()
cbrt in interface MathFunctions<DoubleScalar<PowerUnit>>cbrt in class DoubleScalar.Rel<PowerUnit>public final Power ceil()
ceil in interface MathFunctions<DoubleScalar<PowerUnit>>ceil in class DoubleScalar.Rel<PowerUnit>public final Power cos()
cos in interface MathFunctions<DoubleScalar<PowerUnit>>cos in class DoubleScalar.Rel<PowerUnit>public final Power cosh()
cosh in interface MathFunctions<DoubleScalar<PowerUnit>>cosh in class DoubleScalar.Rel<PowerUnit>public final Power exp()
exp in interface MathFunctions<DoubleScalar<PowerUnit>>exp in class DoubleScalar.Rel<PowerUnit>public final Power expm1()
expm1 in interface MathFunctions<DoubleScalar<PowerUnit>>expm1 in class DoubleScalar.Rel<PowerUnit>public final Power floor()
floor in interface MathFunctions<DoubleScalar<PowerUnit>>floor in class DoubleScalar.Rel<PowerUnit>public final Power log()
log in interface MathFunctions<DoubleScalar<PowerUnit>>log in class DoubleScalar.Rel<PowerUnit>public final Power log10()
log10 in interface MathFunctions<DoubleScalar<PowerUnit>>log10 in class DoubleScalar.Rel<PowerUnit>public final Power log1p()
log1p in interface MathFunctions<DoubleScalar<PowerUnit>>log1p in class DoubleScalar.Rel<PowerUnit>public final Power rint()
rint in interface MathFunctions<DoubleScalar<PowerUnit>>rint in class DoubleScalar.Rel<PowerUnit>public final Power round()
round in interface MathFunctions<DoubleScalar<PowerUnit>>round in class DoubleScalar.Rel<PowerUnit>public final Power signum()
signum in interface MathFunctions<DoubleScalar<PowerUnit>>signum in class DoubleScalar.Rel<PowerUnit>public final Power sin()
sin in interface MathFunctions<DoubleScalar<PowerUnit>>sin in class DoubleScalar.Rel<PowerUnit>public final Power sinh()
sinh in interface MathFunctions<DoubleScalar<PowerUnit>>sinh in class DoubleScalar.Rel<PowerUnit>public final Power sqrt()
sqrt in interface MathFunctions<DoubleScalar<PowerUnit>>sqrt in class DoubleScalar.Rel<PowerUnit>public final Power tan()
tan in interface MathFunctions<DoubleScalar<PowerUnit>>tan in class DoubleScalar.Rel<PowerUnit>public final Power tanh()
tanh in interface MathFunctions<DoubleScalar<PowerUnit>>tanh in class DoubleScalar.Rel<PowerUnit>public final Power inv()
inv in interface MathFunctions<DoubleScalar<PowerUnit>>inv in class DoubleScalar.Rel<PowerUnit>public final Power toDegrees()
toDegrees in interface MathFunctions<DoubleScalar<PowerUnit>>toDegrees in class DoubleScalar.Rel<PowerUnit>public final Power toRadians()
toRadians in interface MathFunctions<DoubleScalar<PowerUnit>>toRadians in class DoubleScalar.Rel<PowerUnit>public final Power pow(double x)
pow in interface MathFunctions<DoubleScalar<PowerUnit>>pow in class DoubleScalar.Rel<PowerUnit>x - double; the value to use as the powerpublic final Power multiplyBy(double factor)
multiplyBy in interface DoubleMathFunctions<DoubleScalar<PowerUnit>>multiplyBy in class DoubleScalar.Rel<PowerUnit>factor - double; the multiplierpublic final Power divideBy(double divisor)
divideBy in interface DoubleMathFunctions<DoubleScalar<PowerUnit>>divideBy in class DoubleScalar.Rel<PowerUnit>divisor - double; the divisorpublic final Power plus(Power v)
v - the value to addpublic final Power minus(Power v)
v - the value to subtractpublic final Dimensionless.Rel divideBy(Power v)
v - Power scalarpublic final Energy multiplyBy(Time.Rel v)
v - Power scalarpublic final Energy divideBy(Frequency v)
v - Power scalarpublic final Frequency divideBy(Energy v)
v - Power scalarpublic final Force divideBy(Speed v)
v - Power scalarpublic final Speed divideBy(Force v)
v - Power scalarpublic final ElectricalCurrent divideBy(ElectricalPotential v)
v - Power scalarpublic final ElectricalPotential divideBy(ElectricalCurrent v)
v - Power scalarCopyright © 2015 Delft University of Technology. All rights reserved.