public class ElectricalPotential extends DoubleScalar.Rel<ElectricalPotentialUnit> implements Relative
Copyright (c) 2013-2015 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
BSD-style license. See DJUNITS License.
$LastChangedDate: 2015-10-04 20:45:14 +0200 (Sun, 04 Oct 2015) $, @version $Revision: 85 $, by $Author: averbraeck $, initial
version Sep 5, 2015
DoubleScalar.Abs<U extends Unit<U>>, DoubleScalar.Rel<U extends Unit<U>>si| Constructor and Description |
|---|
ElectricalPotential(double value,
ElectricalPotentialUnit unit)
Construct ElectricalPotential scalar.
|
ElectricalPotential(DoubleScalar.Rel<ElectricalPotentialUnit> value)
Construct ElectricalPotential scalar.
|
| Modifier and Type | Method and Description |
|---|---|
ElectricalPotential |
abs()
Set the value(s) to their absolute value.
|
ElectricalPotential |
acos()
Set the value(s) to the arc cosine of the value(s); the resulting angle is in the range 0.0 through pi.
|
ElectricalPotential |
asin()
Set the value(s) to the arc sine of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
ElectricalPotential |
atan()
Set the value(s) to the arc tangent of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
ElectricalPotential |
cbrt()
Set the value(s) to the(ir) cube root.
|
ElectricalPotential |
ceil()
Set the value(s) to the smallest (closest to negative infinity) value(s) that are greater than or equal to the argument
and equal to a mathematical integer.
|
ElectricalPotential |
cos()
Set the value(s) to the trigonometric cosine of the value(s).
|
ElectricalPotential |
cosh()
Set the value(s) to the hyperbolic cosine of the value(s).
|
ElectricalPotential |
divideBy(double divisor)
Scale the value(s) by the inverse of a factor; i.e.
|
ElectricalResistance |
divideBy(ElectricalCurrent v)
Calculate the division of ElectricalPotential and ElectricalCurrent, which results in a ElectricalResistance scalar.
|
Dimensionless.Rel |
divideBy(ElectricalPotential v)
Calculate the division of ElectricalPotential and ElectricalPotential, which results in a Dimensionless scalar.
|
ElectricalCurrent |
divideBy(ElectricalResistance v)
Calculate the division of ElectricalPotential and ElectricalResistance, which results in a ElectricalCurrent scalar.
|
ElectricalPotential |
exp()
Set the value(s) to Euler's number e raised to the power of the value(s).
|
ElectricalPotential |
expm1()
Set the value(s) to Euler's number e raised to the power of the value(s) minus 1 (e^x - 1).
|
ElectricalPotential |
floor()
Set the value(s) to the largest (closest to positive infinity) value(s) that are less than or equal to the argument and
equal to a mathematical integer.
|
static ElectricalPotential |
interpolate(ElectricalPotential zero,
ElectricalPotential one,
double ratio)
Interpolate between two values.
|
ElectricalPotential |
inv()
Set the value(s) to the complement (1.0/x) of the value(s).
|
ElectricalPotential |
log()
Set the value(s) to the natural logarithm (base e) of the value(s).
|
ElectricalPotential |
log10()
Set the value(s) to the base 10 logarithm of the value(s).
|
ElectricalPotential |
log1p()
Set the value(s) to the natural logarithm of the sum of the value(s) and 1.
|
ElectricalPotential |
minus(ElectricalPotential v)
Relative scalar minus Relative scalar = Relative scalar.
|
ElectricalPotential |
multiplyBy(double factor)
Scale the value(s) by a factor.
|
Power |
multiplyBy(ElectricalCurrent v)
Calculate the multiplication of ElectricalPotential and ElectricalCurrent, which results in a Power scalar.
|
ElectricalPotential |
plus(ElectricalPotential v)
Relative scalar plus Relative scalar = Relative scalar.
|
ElectricalPotential |
pow(double x)
Set the value(s) to the value(s) raised to the power of the argument.
|
ElectricalPotential |
rint()
Set the value(s) to the value(s) that are closest in value to the argument and equal to a mathematical integer.
|
ElectricalPotential |
round()
Set the value(s) to the closest long to the argument with ties rounding up.
|
ElectricalPotential |
signum()
Set the value(s) to the signum function of the value(s); zero if the argument is zero, 1.0 if the argument is greater
than zero, -1.0 if the argument is less than zero.
|
ElectricalPotential |
sin()
Set the value(s) to the trigonometric sine of the value(s).
|
ElectricalPotential |
sinh()
Set the value(s) to the hyperbolic sine of the value(s).
|
ElectricalPotential |
sqrt()
Set the value(s) to the correctly rounded positive square root of the value(s).
|
ElectricalPotential |
tan()
Set the value(s) to the trigonometric tangent of the value(s).
|
ElectricalPotential |
tanh()
Set the value(s) to the hyperbolic tangent of the value(s).
|
ElectricalPotential |
toDegrees()
Set the value(s) to approximately equivalent angle(s) measured in degrees.
|
ElectricalPotential |
toRadians()
Set the value(s) to approximately equivalent angle(s) measured in radians.
|
compareTo, eq, ge, getSI, gt, le, lt, minus, ne, plusdivide, divide, doubleValue, equals, floatValue, getInUnit, getInUnit, hashCode, interpolate, interpolate, intValue, longValue, minus, minus, minus, multiply, multiply, plus, plus, plus, toString, toString, toString, toStringexpressAsSIUnit, expressAsSpecifiedUnit, getUnit, isAbsolute, isRelativebyteValue, shortValuepublic ElectricalPotential(double value,
ElectricalPotentialUnit unit)
value - double valueunit - unit for the double valuepublic ElectricalPotential(DoubleScalar.Rel<ElectricalPotentialUnit> value)
value - Scalar from which to construct this instancepublic static ElectricalPotential interpolate(ElectricalPotential zero, ElectricalPotential one, double ratio)
zero - the low valueone - the high valueratio - the ratio between 0 and 1, inclusivepublic final ElectricalPotential abs()
abs in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>abs in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential acos()
acos in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>acos in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential asin()
asin in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>asin in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential atan()
atan in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>atan in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential cbrt()
cbrt in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>cbrt in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential ceil()
ceil in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>ceil in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential cos()
cos in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>cos in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential cosh()
cosh in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>cosh in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential exp()
exp in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>exp in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential expm1()
expm1 in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>expm1 in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential floor()
floor in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>floor in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential log()
log in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>log in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential log10()
log10 in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>log10 in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential log1p()
log1p in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>log1p in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential rint()
rint in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>rint in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential round()
round in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>round in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential signum()
signum in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>signum in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential sin()
sin in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>sin in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential sinh()
sinh in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>sinh in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential sqrt()
sqrt in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>sqrt in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential tan()
tan in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>tan in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential tanh()
tanh in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>tanh in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential inv()
inv in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>inv in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential toDegrees()
toDegrees in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>toDegrees in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential toRadians()
toRadians in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>toRadians in class DoubleScalar.Rel<ElectricalPotentialUnit>public final ElectricalPotential pow(double x)
pow in interface MathFunctions<DoubleScalar<ElectricalPotentialUnit>>pow in class DoubleScalar.Rel<ElectricalPotentialUnit>x - double; the value to use as the powerpublic final ElectricalPotential multiplyBy(double factor)
multiplyBy in interface DoubleMathFunctions<DoubleScalar<ElectricalPotentialUnit>>multiplyBy in class DoubleScalar.Rel<ElectricalPotentialUnit>factor - double; the multiplierpublic final ElectricalPotential divideBy(double divisor)
divideBy in interface DoubleMathFunctions<DoubleScalar<ElectricalPotentialUnit>>divideBy in class DoubleScalar.Rel<ElectricalPotentialUnit>divisor - double; the divisorpublic final ElectricalPotential plus(ElectricalPotential v)
v - the value to addpublic final ElectricalPotential minus(ElectricalPotential v)
v - the value to subtractpublic final Dimensionless.Rel divideBy(ElectricalPotential v)
v - ElectricalPotential scalarpublic final Power multiplyBy(ElectricalCurrent v)
v - ElectricalPotential scalarpublic final ElectricalResistance divideBy(ElectricalCurrent v)
v - ElectricalPotential scalarpublic final ElectricalCurrent divideBy(ElectricalResistance v)
v - ElectricalPotential scalarCopyright © 2015 Delft University of Technology. All rights reserved.