View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.FlowMassUnit;
8   import org.djunits.unit.FlowVolumeUnit;
9   import org.djunits.unit.FrequencyUnit;
10  import org.djunits.unit.SpeedUnit;
11  import org.djunits.unit.VolumeUnit;
12  import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRel;
13  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
14  import org.djutils.base.NumberParser;
15  import org.djutils.exceptions.Throw;
16  
17  import jakarta.annotation.Generated;
18  
19  /**
20   * Easy access methods for the FlowVolume DoubleScalar, which is relative by definition.
21   * <p>
22   * Copyright (c) 2013-2023 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
23   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
24   * </p>
25   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
26   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
27   */
28  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-04-30T13:59:27.633664900Z")
29  public class FlowVolume extends AbstractDoubleScalarRel<FlowVolumeUnit, FlowVolume>
30  {
31      /** */
32      private static final long serialVersionUID = 20150905L;
33  
34      /** Constant with value zero. */
35      public static final FlowVolume ZERO = new FlowVolume(0.0, FlowVolumeUnit.SI);
36  
37      /** Constant with value one. */
38      public static final FlowVolume ONE = new FlowVolume(1.0, FlowVolumeUnit.SI);
39  
40      /** Constant with value NaN. */
41      @SuppressWarnings("checkstyle:constantname")
42      public static final FlowVolume NaN = new FlowVolume(Double.NaN, FlowVolumeUnit.SI);
43  
44      /** Constant with value POSITIVE_INFINITY. */
45      public static final FlowVolume POSITIVE_INFINITY = new FlowVolume(Double.POSITIVE_INFINITY, FlowVolumeUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final FlowVolume NEGATIVE_INFINITY = new FlowVolume(Double.NEGATIVE_INFINITY, FlowVolumeUnit.SI);
49  
50      /** Constant with value MAX_VALUE. */
51      public static final FlowVolume POS_MAXVALUE = new FlowVolume(Double.MAX_VALUE, FlowVolumeUnit.SI);
52  
53      /** Constant with value -MAX_VALUE. */
54      public static final FlowVolume NEG_MAXVALUE = new FlowVolume(-Double.MAX_VALUE, FlowVolumeUnit.SI);
55  
56      /**
57       * Construct FlowVolume scalar.
58       * @param value double; the double value
59       * @param unit FlowVolumeUnit; unit for the double value
60       */
61      public FlowVolume(final double value, final FlowVolumeUnit unit)
62      {
63          super(value, unit);
64      }
65  
66      /**
67       * Construct FlowVolume scalar.
68       * @param value FlowVolume; Scalar from which to construct this instance
69       */
70      public FlowVolume(final FlowVolume value)
71      {
72          super(value);
73      }
74  
75      /** {@inheritDoc} */
76      @Override
77      public final FlowVolume instantiateRel(final double value, final FlowVolumeUnit unit)
78      {
79          return new FlowVolume(value, unit);
80      }
81  
82      /**
83       * Construct FlowVolume scalar.
84       * @param value double; the double value in SI units
85       * @return FlowVolume; the new scalar with the SI value
86       */
87      public static final FlowVolume instantiateSI(final double value)
88      {
89          return new FlowVolume(value, FlowVolumeUnit.SI);
90      }
91  
92      /**
93       * Interpolate between two values.
94       * @param zero FlowVolume; the low value
95       * @param one FlowVolume; the high value
96       * @param ratio double; the ratio between 0 and 1, inclusive
97       * @return FlowVolume; a Scalar at the ratio between
98       */
99      public static FlowVolume interpolate(final FlowVolume zero, final FlowVolume one, final double ratio)
100     {
101         return new FlowVolume(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
102                 zero.getDisplayUnit());
103     }
104 
105     /**
106      * Return the maximum value of two relative scalars.
107      * @param r1 FlowVolume; the first scalar
108      * @param r2 FlowVolume; the second scalar
109      * @return FlowVolume; the maximum value of two relative scalars
110      */
111     public static FlowVolume max(final FlowVolume r1, final FlowVolume r2)
112     {
113         return r1.gt(r2) ? r1 : r2;
114     }
115 
116     /**
117      * Return the maximum value of more than two relative scalars.
118      * @param r1 FlowVolume; the first scalar
119      * @param r2 FlowVolume; the second scalar
120      * @param rn FlowVolume...; the other scalars
121      * @return FlowVolume; the maximum value of more than two relative scalars
122      */
123     public static FlowVolume max(final FlowVolume r1, final FlowVolume r2, final FlowVolume... rn)
124     {
125         FlowVolume maxr = r1.gt(r2) ? r1 : r2;
126         for (FlowVolume r : rn)
127         {
128             if (r.gt(maxr))
129             {
130                 maxr = r;
131             }
132         }
133         return maxr;
134     }
135 
136     /**
137      * Return the minimum value of two relative scalars.
138      * @param r1 FlowVolume; the first scalar
139      * @param r2 FlowVolume; the second scalar
140      * @return FlowVolume; the minimum value of two relative scalars
141      */
142     public static FlowVolume min(final FlowVolume r1, final FlowVolume r2)
143     {
144         return r1.lt(r2) ? r1 : r2;
145     }
146 
147     /**
148      * Return the minimum value of more than two relative scalars.
149      * @param r1 FlowVolume; the first scalar
150      * @param r2 FlowVolume; the second scalar
151      * @param rn FlowVolume...; the other scalars
152      * @return FlowVolume; the minimum value of more than two relative scalars
153      */
154     public static FlowVolume min(final FlowVolume r1, final FlowVolume r2, final FlowVolume... rn)
155     {
156         FlowVolume minr = r1.lt(r2) ? r1 : r2;
157         for (FlowVolume r : rn)
158         {
159             if (r.lt(minr))
160             {
161                 minr = r;
162             }
163         }
164         return minr;
165     }
166 
167     /**
168      * Returns a FlowVolume representation of a textual representation of a value with a unit. The String representation that
169      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
170      * allowed, but not required, between the value and the unit.
171      * @param text String; the textual representation to parse into a FlowVolume
172      * @return FlowVolume; the Scalar representation of the value in its unit
173      * @throws IllegalArgumentException when the text cannot be parsed
174      * @throws NullPointerException when the text argument is null
175      */
176     public static FlowVolume valueOf(final String text)
177     {
178         Throw.whenNull(text, "Error parsing FlowVolume: text to parse is null");
179         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FlowVolume: empty text to parse");
180         try
181         {
182             NumberParser numberParser = new NumberParser().lenient().trailing();
183             double d = numberParser.parseDouble(text);
184             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
185             FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
186             if (unit == null)
187                 throw new IllegalArgumentException("Unit " + unitString + " not found");
188             return new FlowVolume(d, unit);
189         }
190         catch (Exception exception)
191         {
192             throw new IllegalArgumentException(
193                     "Error parsing FlowVolume from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
194                     exception);
195         }
196     }
197 
198     /**
199      * Returns a FlowVolume based on a value and the textual representation of the unit, which can be localized.
200      * @param value double; the value to use
201      * @param unitString String; the textual representation of the unit
202      * @return FlowVolume; the Scalar representation of the value in its unit
203      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
204      * @throws NullPointerException when the unitString argument is null
205      */
206     public static FlowVolume of(final double value, final String unitString)
207     {
208         Throw.whenNull(unitString, "Error parsing FlowVolume: unitString is null");
209         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FlowVolume: empty unitString");
210         FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
211         if (unit != null)
212         {
213             return new FlowVolume(value, unit);
214         }
215         throw new IllegalArgumentException("Error parsing FlowVolume with unit " + unitString);
216     }
217 
218     /**
219      * Calculate the division of FlowVolume and FlowVolume, which results in a Dimensionless scalar.
220      * @param v FlowVolume; scalar
221      * @return Dimensionless; scalar as a division of FlowVolume and FlowVolume
222      */
223     public final Dimensionless divide(final FlowVolume v)
224     {
225         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
226     }
227 
228     /**
229      * Calculate the multiplication of FlowVolume and Duration, which results in a Volume scalar.
230      * @param v FlowVolume; scalar
231      * @return Volume; scalar as a multiplication of FlowVolume and Duration
232      */
233     public final Volume times(final Duration v)
234     {
235         return new Volume(this.si * v.si, VolumeUnit.SI);
236     }
237 
238     /**
239      * Calculate the division of FlowVolume and Frequency, which results in a Volume scalar.
240      * @param v FlowVolume; scalar
241      * @return Volume; scalar as a division of FlowVolume and Frequency
242      */
243     public final Volume divide(final Frequency v)
244     {
245         return new Volume(this.si / v.si, VolumeUnit.SI);
246     }
247 
248     /**
249      * Calculate the division of FlowVolume and Volume, which results in a Frequency scalar.
250      * @param v FlowVolume; scalar
251      * @return Frequency; scalar as a division of FlowVolume and Volume
252      */
253     public final Frequency divide(final Volume v)
254     {
255         return new Frequency(this.si / v.si, FrequencyUnit.SI);
256     }
257 
258     /**
259      * Calculate the division of FlowVolume and Area, which results in a Speed scalar.
260      * @param v FlowVolume; scalar
261      * @return Speed; scalar as a division of FlowVolume and Area
262      */
263     public final Speed divide(final Area v)
264     {
265         return new Speed(this.si / v.si, SpeedUnit.SI);
266     }
267 
268     /**
269      * Calculate the division of FlowVolume and Speed, which results in a Area scalar.
270      * @param v FlowVolume; scalar
271      * @return Area; scalar as a division of FlowVolume and Speed
272      */
273     public final Area divide(final Speed v)
274     {
275         return new Area(this.si / v.si, AreaUnit.SI);
276     }
277 
278     /**
279      * Calculate the multiplication of FlowVolume and Density, which results in a FlowMass scalar.
280      * @param v FlowVolume; scalar
281      * @return FlowMass; scalar as a multiplication of FlowVolume and Density
282      */
283     public final FlowMass times(final Density v)
284     {
285         return new FlowMass(this.si * v.si, FlowMassUnit.SI);
286     }
287 
288     /** {@inheritDoc} */
289     @Override
290     public SIScalar reciprocal()
291     {
292         return DoubleScalar.divide(Dimensionless.ONE, this);
293     }
294 
295 }