View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AccelerationUnit;
6   import org.djunits.unit.AngularAccelerationUnit;
7   import org.djunits.unit.AngularVelocityUnit;
8   import org.djunits.unit.DimensionlessUnit;
9   import org.djunits.unit.FrequencyUnit;
10  import org.djunits.unit.PowerUnit;
11  import org.djunits.unit.SpeedUnit;
12  import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRel;
13  import org.djutils.base.NumberParser;
14  import org.djutils.exceptions.Throw;
15  
16  import jakarta.annotation.Generated;
17  
18  /**
19   * Easy access methods for the Frequency DoubleScalar, which is relative by definition.
20   * <p>
21   * Copyright (c) 2013-2023 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
22   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
23   * </p>
24   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
25   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
26   */
27  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-04-30T13:59:27.633664900Z")
28  public class Frequency extends AbstractDoubleScalarRel<FrequencyUnit, Frequency>
29  {
30      /** */
31      private static final long serialVersionUID = 20150905L;
32  
33      /** Constant with value zero. */
34      public static final Frequency ZERO = new Frequency(0.0, FrequencyUnit.SI);
35  
36      /** Constant with value one. */
37      public static final Frequency ONE = new Frequency(1.0, FrequencyUnit.SI);
38  
39      /** Constant with value NaN. */
40      @SuppressWarnings("checkstyle:constantname")
41      public static final Frequency NaN = new Frequency(Double.NaN, FrequencyUnit.SI);
42  
43      /** Constant with value POSITIVE_INFINITY. */
44      public static final Frequency POSITIVE_INFINITY = new Frequency(Double.POSITIVE_INFINITY, FrequencyUnit.SI);
45  
46      /** Constant with value NEGATIVE_INFINITY. */
47      public static final Frequency NEGATIVE_INFINITY = new Frequency(Double.NEGATIVE_INFINITY, FrequencyUnit.SI);
48  
49      /** Constant with value MAX_VALUE. */
50      public static final Frequency POS_MAXVALUE = new Frequency(Double.MAX_VALUE, FrequencyUnit.SI);
51  
52      /** Constant with value -MAX_VALUE. */
53      public static final Frequency NEG_MAXVALUE = new Frequency(-Double.MAX_VALUE, FrequencyUnit.SI);
54  
55      /**
56       * Construct Frequency scalar.
57       * @param value double; the double value
58       * @param unit FrequencyUnit; unit for the double value
59       */
60      public Frequency(final double value, final FrequencyUnit unit)
61      {
62          super(value, unit);
63      }
64  
65      /**
66       * Construct Frequency scalar.
67       * @param value Frequency; Scalar from which to construct this instance
68       */
69      public Frequency(final Frequency value)
70      {
71          super(value);
72      }
73  
74      /** {@inheritDoc} */
75      @Override
76      public final Frequency instantiateRel(final double value, final FrequencyUnit unit)
77      {
78          return new Frequency(value, unit);
79      }
80  
81      /**
82       * Construct Frequency scalar.
83       * @param value double; the double value in SI units
84       * @return Frequency; the new scalar with the SI value
85       */
86      public static final Frequency instantiateSI(final double value)
87      {
88          return new Frequency(value, FrequencyUnit.SI);
89      }
90  
91      /**
92       * Interpolate between two values.
93       * @param zero Frequency; the low value
94       * @param one Frequency; the high value
95       * @param ratio double; the ratio between 0 and 1, inclusive
96       * @return Frequency; a Scalar at the ratio between
97       */
98      public static Frequency interpolate(final Frequency zero, final Frequency one, final double ratio)
99      {
100         return new Frequency(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
101                 zero.getDisplayUnit());
102     }
103 
104     /**
105      * Return the maximum value of two relative scalars.
106      * @param r1 Frequency; the first scalar
107      * @param r2 Frequency; the second scalar
108      * @return Frequency; the maximum value of two relative scalars
109      */
110     public static Frequency max(final Frequency r1, final Frequency r2)
111     {
112         return r1.gt(r2) ? r1 : r2;
113     }
114 
115     /**
116      * Return the maximum value of more than two relative scalars.
117      * @param r1 Frequency; the first scalar
118      * @param r2 Frequency; the second scalar
119      * @param rn Frequency...; the other scalars
120      * @return Frequency; the maximum value of more than two relative scalars
121      */
122     public static Frequency max(final Frequency r1, final Frequency r2, final Frequency... rn)
123     {
124         Frequency maxr = r1.gt(r2) ? r1 : r2;
125         for (Frequency r : rn)
126         {
127             if (r.gt(maxr))
128             {
129                 maxr = r;
130             }
131         }
132         return maxr;
133     }
134 
135     /**
136      * Return the minimum value of two relative scalars.
137      * @param r1 Frequency; the first scalar
138      * @param r2 Frequency; the second scalar
139      * @return Frequency; the minimum value of two relative scalars
140      */
141     public static Frequency min(final Frequency r1, final Frequency r2)
142     {
143         return r1.lt(r2) ? r1 : r2;
144     }
145 
146     /**
147      * Return the minimum value of more than two relative scalars.
148      * @param r1 Frequency; the first scalar
149      * @param r2 Frequency; the second scalar
150      * @param rn Frequency...; the other scalars
151      * @return Frequency; the minimum value of more than two relative scalars
152      */
153     public static Frequency min(final Frequency r1, final Frequency r2, final Frequency... rn)
154     {
155         Frequency minr = r1.lt(r2) ? r1 : r2;
156         for (Frequency r : rn)
157         {
158             if (r.lt(minr))
159             {
160                 minr = r;
161             }
162         }
163         return minr;
164     }
165 
166     /**
167      * Returns a Frequency representation of a textual representation of a value with a unit. The String representation that can
168      * be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
169      * allowed, but not required, between the value and the unit.
170      * @param text String; the textual representation to parse into a Frequency
171      * @return Frequency; the Scalar representation of the value in its unit
172      * @throws IllegalArgumentException when the text cannot be parsed
173      * @throws NullPointerException when the text argument is null
174      */
175     public static Frequency valueOf(final String text)
176     {
177         Throw.whenNull(text, "Error parsing Frequency: text to parse is null");
178         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Frequency: empty text to parse");
179         try
180         {
181             NumberParser numberParser = new NumberParser().lenient().trailing();
182             double d = numberParser.parseDouble(text);
183             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
184             FrequencyUnit unit = FrequencyUnit.BASE.getUnitByAbbreviation(unitString);
185             if (unit == null)
186                 throw new IllegalArgumentException("Unit " + unitString + " not found");
187             return new Frequency(d, unit);
188         }
189         catch (Exception exception)
190         {
191             throw new IllegalArgumentException(
192                     "Error parsing Frequency from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
193                     exception);
194         }
195     }
196 
197     /**
198      * Returns a Frequency based on a value and the textual representation of the unit, which can be localized.
199      * @param value double; the value to use
200      * @param unitString String; the textual representation of the unit
201      * @return Frequency; the Scalar representation of the value in its unit
202      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
203      * @throws NullPointerException when the unitString argument is null
204      */
205     public static Frequency of(final double value, final String unitString)
206     {
207         Throw.whenNull(unitString, "Error parsing Frequency: unitString is null");
208         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Frequency: empty unitString");
209         FrequencyUnit unit = FrequencyUnit.BASE.getUnitByAbbreviation(unitString);
210         if (unit != null)
211         {
212             return new Frequency(value, unit);
213         }
214         throw new IllegalArgumentException("Error parsing Frequency with unit " + unitString);
215     }
216 
217     /**
218      * Calculate the division of Frequency and Frequency, which results in a Dimensionless scalar.
219      * @param v Frequency; scalar
220      * @return Dimensionless; scalar as a division of Frequency and Frequency
221      */
222     public final Dimensionless divide(final Frequency v)
223     {
224         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
225     }
226 
227     /**
228      * Calculate the multiplication of Frequency and Duration, which results in a Dimensionless scalar.
229      * @param v Frequency; scalar
230      * @return Dimensionless; scalar as a multiplication of Frequency and Duration
231      */
232     public final Dimensionless times(final Duration v)
233     {
234         return new Dimensionless(this.si * v.si, DimensionlessUnit.SI);
235     }
236 
237     /**
238      * Calculate the multiplication of Frequency and Length, which results in a Speed scalar.
239      * @param v Frequency; scalar
240      * @return Speed; scalar as a multiplication of Frequency and Length
241      */
242     public final Speed times(final Length v)
243     {
244         return new Speed(this.si * v.si, SpeedUnit.SI);
245     }
246 
247     /**
248      * Calculate the multiplication of Frequency and Speed, which results in a Acceleration scalar.
249      * @param v Frequency; scalar
250      * @return Acceleration; scalar as a multiplication of Frequency and Speed
251      */
252     public final Acceleration times(final Speed v)
253     {
254         return new Acceleration(this.si * v.si, AccelerationUnit.SI);
255     }
256 
257     /**
258      * Calculate the multiplication of Frequency and Energy, which results in a Power scalar.
259      * @param v Frequency; scalar
260      * @return Power; scalar as a multiplication of Frequency and Energy
261      */
262     public final Power times(final Energy v)
263     {
264         return new Power(this.si * v.si, PowerUnit.SI);
265     }
266 
267     /**
268      * Calculate the multiplication of Frequency and Angle, which results in a AngularVelocity scalar.
269      * @param v Frequency; scalar
270      * @return AngularVelocity; scalar as a multiplication of Frequency and Angle
271      */
272     public final AngularVelocity times(final Angle v)
273     {
274         return new AngularVelocity(this.si * v.si, AngularVelocityUnit.SI);
275     }
276 
277     /**
278      * Calculate the multiplication of Frequency and AngularVelocity, which results in a AngularAcceleration scalar.
279      * @param v Frequency; scalar
280      * @return AngularAcceleration; scalar as a multiplication of Frequency and AngularVelocity
281      */
282     public final AngularAcceleration times(final AngularVelocity v)
283     {
284         return new AngularAcceleration(this.si * v.si, AngularAccelerationUnit.SI);
285     }
286 
287     /** {@inheritDoc} */
288     @Override
289     public Duration reciprocal()
290     {
291         return Duration.instantiateSI(1.0 / this.si);
292     }
293 
294 }