View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import org.djunits.unit.DimensionlessUnit;
4   import org.djunits.unit.ForceUnit;
5   import org.djunits.unit.FrequencyUnit;
6   import org.djunits.unit.LengthUnit;
7   import org.djunits.unit.LinearDensityUnit;
8   import org.djunits.unit.MoneyPerLengthUnit;
9   
10  /**
11   * Easy access methods for the LinearDensity FloatScalar, which is relative by definition. An example is Speed. Instead of:
12   * 
13   * <pre>
14   * FloatScalar.Rel&lt;LinearDensityUnit&gt; value = new FloatScalar.Rel&lt;LinearDensityUnit&gt;(100.0, LinearDensityUnit.SI);
15   * </pre>
16   * 
17   * we can now write:
18   * 
19   * <pre>
20   * FloatLinearDensity value = new FloatLinearDensity(100.0, LinearDensityUnit.SI);
21   * </pre>
22   * 
23   * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
24   * used are compatible.
25   * <p>
26   * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
27   * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
28   * <p>
29   * $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
30   * initial version Sep 5, 2015 <br>
31   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
32   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
33   */
34  public class FloatLinearDensity extends AbstractFloatScalarRel<LinearDensityUnit, FloatLinearDensity>
35  {
36      /** */
37      private static final long serialVersionUID = 20150901L;
38  
39      /** constant with value zero. */
40      public static final FloatLinearDensity ZERO = new FloatLinearDensity(0.0f, LinearDensityUnit.SI);
41  
42      /** constant with value NaN. */
43      @SuppressWarnings("checkstyle:constantname")
44      public static final FloatLinearDensity NaN = new FloatLinearDensity(Float.NaN, LinearDensityUnit.SI);
45  
46      /** constant with value POSITIVE_INFINITY. */
47      public static final FloatLinearDensity POSITIVE_INFINITY =
48              new FloatLinearDensity(Float.POSITIVE_INFINITY, LinearDensityUnit.SI);
49  
50      /** constant with value NEGATIVE_INFINITY. */
51      public static final FloatLinearDensity NEGATIVE_INFINITY =
52              new FloatLinearDensity(Float.NEGATIVE_INFINITY, LinearDensityUnit.SI);
53  
54      /** constant with value MAX_VALUE. */
55      public static final FloatLinearDensity POS_MAXVALUE = new FloatLinearDensity(Float.MAX_VALUE, LinearDensityUnit.SI);
56  
57      /** constant with value -MAX_VALUE. */
58      public static final FloatLinearDensity NEG_MAXVALUE = new FloatLinearDensity(-Float.MAX_VALUE, LinearDensityUnit.SI);
59  
60      /**
61       * Construct FloatLinearDensity scalar.
62       * @param value float value
63       * @param unit unit for the float value
64       */
65      public FloatLinearDensity(final float value, final LinearDensityUnit unit)
66      {
67          super(value, unit);
68      }
69  
70      /**
71       * Construct FloatLinearDensity scalar.
72       * @param value Scalar from which to construct this instance
73       */
74      public FloatLinearDensity(final FloatLinearDensity value)
75      {
76          super(value);
77      }
78  
79      /**
80       * Construct FloatLinearDensity scalar using a double value.
81       * @param value double value
82       * @param unit unit for the resulting float value
83       */
84      public FloatLinearDensity(final double value, final LinearDensityUnit unit)
85      {
86          super((float) value, unit);
87      }
88  
89      /** {@inheritDoc} */
90      @Override
91      public final FloatLinearDensity instantiateRel(final float value, final LinearDensityUnit unit)
92      {
93          return new FloatLinearDensity(value, unit);
94      }
95  
96      /**
97       * Construct FloatLinearDensity scalar.
98       * @param value float value in SI units
99       * @return the new scalar with the SI value
100      */
101     public static final FloatLinearDensity createSI(final float value)
102     {
103         return new FloatLinearDensity(value, LinearDensityUnit.SI);
104     }
105 
106     /**
107      * Interpolate between two values.
108      * @param zero the low value
109      * @param one the high value
110      * @param ratio the ratio between 0 and 1, inclusive
111      * @return a Scalar at the ratio between
112      */
113     public static FloatLinearDensity interpolate(final FloatLinearDensity zero, final FloatLinearDensity one, final float ratio)
114     {
115         return new FloatLinearDensity(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
116     }
117 
118     /**
119      * Return the maximum value of two relative scalars.
120      * @param r1 the first scalar
121      * @param r2 the second scalar
122      * @return the maximum value of two relative scalars
123      */
124     public static FloatLinearDensity max(final FloatLinearDensity r1, final FloatLinearDensity r2)
125     {
126         return (r1.gt(r2)) ? r1 : r2;
127     }
128 
129     /**
130      * Return the maximum value of more than two relative scalars.
131      * @param r1 the first scalar
132      * @param r2 the second scalar
133      * @param rn the other scalars
134      * @return the maximum value of more than two relative scalars
135      */
136     public static FloatLinearDensity max(final FloatLinearDensity r1, final FloatLinearDensity r2,
137             final FloatLinearDensity... rn)
138     {
139         FloatLinearDensity maxr = (r1.gt(r2)) ? r1 : r2;
140         for (FloatLinearDensity r : rn)
141         {
142             if (r.gt(maxr))
143             {
144                 maxr = r;
145             }
146         }
147         return maxr;
148     }
149 
150     /**
151      * Return the minimum value of two relative scalars.
152      * @param r1 the first scalar
153      * @param r2 the second scalar
154      * @return the minimum value of two relative scalars
155      */
156     public static FloatLinearDensity min(final FloatLinearDensity r1, final FloatLinearDensity r2)
157     {
158         return (r1.lt(r2)) ? r1 : r2;
159     }
160 
161     /**
162      * Return the minimum value of more than two relative scalars.
163      * @param r1 the first scalar
164      * @param r2 the second scalar
165      * @param rn the other scalars
166      * @return the minimum value of more than two relative scalars
167      */
168     public static FloatLinearDensity min(final FloatLinearDensity r1, final FloatLinearDensity r2,
169             final FloatLinearDensity... rn)
170     {
171         FloatLinearDensity minr = (r1.lt(r2)) ? r1 : r2;
172         for (FloatLinearDensity r : rn)
173         {
174             if (r.lt(minr))
175             {
176                 minr = r;
177             }
178         }
179         return minr;
180     }
181 
182     /**
183      * Calculate the division of FloatLinearDensity and FloatLinearDensity, which results in a FloatDimensionless scalar.
184      * @param v FloatLinearDensity scalar
185      * @return FloatDimensionless scalar as a division of FloatLinearDensity and FloatLinearDensity
186      */
187     public final FloatDimensionless divideBy(final FloatLinearDensity v)
188     {
189         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
190     }
191 
192     /**
193      * Calculate the multiplication of FloatLinearDensity and FloatArea, which results in a FloatLength scalar.
194      * @param v FloatLinearDensity scalar
195      * @return FloatLength scalar as a multiplication of FloatLinearDensity and FloatArea
196      */
197     public final FloatLength multiplyBy(final FloatArea v)
198     {
199         return new FloatLength(this.si * v.si, LengthUnit.SI);
200     }
201 
202     /**
203      * Calculate the multiplication of FloatLinearDensity and FloatEnergy, which results in a FloatForce scalar.
204      * @param v FloatLinearDensity scalar
205      * @return FloatForce scalar as a multiplication of FloatLinearDensity and FloatEnergy
206      */
207     public final FloatForce multiplyBy(final FloatEnergy v)
208     {
209         return new FloatForce(this.si * v.si, ForceUnit.SI);
210     }
211 
212     /**
213      * Calculate the multiplication of FloatLinearDensity and FloatSpeed, which results in a FloatFrequency scalar.
214      * @param v FloatLinearDensity scalar
215      * @return FloatFrequency scalar as a multiplication of FloatLinearDensity and FloatSpeed
216      */
217     public final FloatFrequency multiplyBy(final FloatSpeed v)
218     {
219         return new FloatFrequency(this.si * v.si, FrequencyUnit.SI);
220     }
221 
222     /**
223      * Calculate the multiplication of FloatLinearDensity and FloatMoney, which results in a FloatMoneyPerLength scalar.
224      * @param v FloatLinearDensity scalar
225      * @return FloatMoneyPerLength scalar as a multiplication of FloatLinearDensity and FloatMoney
226      */
227     public final FloatMoneyPerLength multiplyBy(final FloatMoney v)
228     {
229         return new FloatMoneyPerLength(this.si * v.si, MoneyPerLengthUnit.getStandardMoneyPerLengthUnit());
230     }
231 
232 }