View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import org.djunits.unit.AreaUnit;
4   import org.djunits.unit.DimensionlessUnit;
5   import org.djunits.unit.DurationUnit;
6   import org.djunits.unit.EnergyUnit;
7   import org.djunits.unit.LengthUnit;
8   import org.djunits.unit.LinearDensityUnit;
9   import org.djunits.unit.MoneyUnit;
10  import org.djunits.unit.PositionUnit;
11  import org.djunits.unit.SpeedUnit;
12  import org.djunits.unit.VolumeUnit;
13  
14  /**
15   * Easy access methods for the %Type% FloatScalar. Instead of:
16   * 
17   * <pre>
18   * FloatScalar.Rel&lt;LengthUnit&gt; value = new FloatScalar.Rel&lt;LengthUnit&gt;(100.0, LengthUnit.SI);
19   * </pre>
20   * 
21   * we can now write:
22   * 
23   * <pre>
24   * FloatLength value = new FloatLength(100.0, LengthUnit.SI);
25   * </pre>
26   * 
27   * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
28   * used are compatible.
29   * <p>
30   * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
31   * All rights reserved. <br>
32   * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
33   * <p>
34   * $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
35   * initial version Sep 1, 2015 <br>
36   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
37   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
38   */
39  public class FloatLength extends AbstractFloatScalarRel<LengthUnit, FloatLength>
40  {
41      /** */
42      private static final long serialVersionUID = 20150901L;
43  
44      /** constant with value zero. */
45      public static final FloatLength ZERO = new FloatLength(0.0f, LengthUnit.SI);
46  
47      /** constant with value NaN. */
48      @SuppressWarnings("checkstyle:constantname")
49      public static final FloatLength NaN = new FloatLength(Float.NaN, LengthUnit.SI);
50  
51      /** constant with value POSITIVE_INFINITY. */
52      public static final FloatLength POSITIVE_INFINITY = new FloatLength(Float.POSITIVE_INFINITY, LengthUnit.SI);
53  
54      /** constant with value NEGATIVE_INFINITY. */
55      public static final FloatLength NEGATIVE_INFINITY = new FloatLength(Float.NEGATIVE_INFINITY, LengthUnit.SI);
56  
57      /** constant with value MAX_VALUE. */
58      public static final FloatLength POS_MAXVALUE = new FloatLength(Float.MAX_VALUE, LengthUnit.SI);
59  
60      /** constant with value -MAX_VALUE. */
61      public static final FloatLength NEG_MAXVALUE = new FloatLength(-Float.MAX_VALUE, LengthUnit.SI);
62  
63      /**
64       * Construct FloatLength scalar.
65       * @param value float value
66       * @param unit unit for the float value
67       */
68      public FloatLength(final float value, final LengthUnit unit)
69      {
70          super(value, unit);
71      }
72  
73      /**
74       * Construct FloatLength scalar.
75       * @param value Scalar from which to construct this instance
76       */
77      public FloatLength(final FloatLength value)
78      {
79          super(value);
80      }
81  
82      /**
83       * Construct FloatLength scalar using a double value.
84       * @param value double value
85       * @param unit unit for the resulting float value
86       */
87      public FloatLength(final double value, final LengthUnit unit)
88      {
89          super((float) value, unit);
90      }
91  
92      /** {@inheritDoc} */
93      @Override
94      public final FloatLength instantiateRel(final float value, final LengthUnit unit)
95      {
96          return new FloatLength(value, unit);
97      }
98  
99      /**
100      * Construct FloatLength scalar.
101      * @param value float value in SI units
102      * @return the new scalar with the SI value
103      */
104     public static final FloatLength createSI(final float value)
105     {
106         return new FloatLength(value, LengthUnit.SI);
107     }
108 
109     /**
110      * Construct a new Absolute Immutable FloatScalar of the right type. Each extending class must implement this method.
111      * @param value the float value
112      * @param unit the unit
113      * @return A a new absolute instance of the FloatScalar of the right type
114      */
115     public final FloatPosition instantiateAbs(final float value, final PositionUnit unit)
116     {
117         return new FloatPosition(value, unit);
118     }
119 
120     /**
121      * Interpolate between two values.
122      * @param zero the low value
123      * @param one the high value
124      * @param ratio the ratio between 0 and 1, inclusive
125      * @return a Scalar at the ratio between
126      */
127     public static FloatLength interpolate(final FloatLength zero, final FloatLength one, final float ratio)
128     {
129         return new FloatLength(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
130     }
131 
132     /**
133      * Relative scalar plus Absolute scalar = Absolute scalar.
134      * @param v the value to add
135      * @return sum of this value and v as a new object
136      */
137     public final FloatPosition plus(final FloatPosition v)
138     {
139         PositionUnit targetUnit = v.getUnit();
140         return instantiateAbs(v.getInUnit() + getInUnit(targetUnit.getRelativeUnit()), targetUnit);
141     }
142 
143     /**
144      * Return the maximum value of two relative scalars.
145      * @param r1 the first scalar
146      * @param r2 the second scalar
147      * @return the maximum value of two relative scalars
148      */
149     public static FloatLength max(final FloatLength r1, final FloatLength r2)
150     {
151         return (r1.gt(r2)) ? r1 : r2;
152     }
153 
154     /**
155      * Return the maximum value of more than two relative scalars.
156      * @param r1 the first scalar
157      * @param r2 the second scalar
158      * @param rn the other scalars
159      * @return the maximum value of more than two relative scalars
160      */
161     public static FloatLength max(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
162     {
163         FloatLength maxr = (r1.gt(r2)) ? r1 : r2;
164         for (FloatLength r : rn)
165         {
166             if (r.gt(maxr))
167             {
168                 maxr = r;
169             }
170         }
171         return maxr;
172     }
173 
174     /**
175      * Return the minimum value of two relative scalars.
176      * @param r1 the first scalar
177      * @param r2 the second scalar
178      * @return the minimum value of two relative scalars
179      */
180     public static FloatLength min(final FloatLength r1, final FloatLength r2)
181     {
182         return (r1.lt(r2)) ? r1 : r2;
183     }
184 
185     /**
186      * Return the minimum value of more than two relative scalars.
187      * @param r1 the first scalar
188      * @param r2 the second scalar
189      * @param rn the other scalars
190      * @return the minimum value of more than two relative scalars
191      */
192     public static FloatLength min(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
193     {
194         FloatLength minr = (r1.lt(r2)) ? r1 : r2;
195         for (FloatLength r : rn)
196         {
197             if (r.lt(minr))
198             {
199                 minr = r;
200             }
201         }
202         return minr;
203     }
204 
205     /**
206      * Calculate the division of FloatLength and FloatLength, which results in a FloatDimensionless scalar.
207      * @param v FloatLength scalar
208      * @return FloatDimensionless scalar as a division of FloatLength and FloatLength
209      */
210     public final FloatDimensionless divideBy(final FloatLength v)
211     {
212         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
213     }
214 
215     /**
216      * Calculate the multiplication of FloatLength and FloatLength, which results in a FloatArea scalar.
217      * @param v FloatLength scalar
218      * @return FloatArea scalar as a multiplication of FloatLength and FloatLength
219      */
220     public final FloatArea multiplyBy(final FloatLength v)
221     {
222         return new FloatArea(this.si * v.si, AreaUnit.SI);
223     }
224 
225     /**
226      * Calculate the division of FloatLength and FloatLinearDensity, which results in a FloatArea scalar.
227      * @param v FloatLength scalar
228      * @return FloatArea scalar as a division of FloatLength and FloatLinearDensity
229      */
230     public final FloatArea divideBy(final FloatLinearDensity v)
231     {
232         return new FloatArea(this.si / v.si, AreaUnit.SI);
233     }
234 
235     /**
236      * Calculate the division of FloatLength and FloatArea, which results in a FloatLinearDensity scalar.
237      * @param v FloatLength scalar
238      * @return FloatLinearDensity scalar as a division of FloatLength and FloatArea
239      */
240     public final FloatLinearDensity divideBy(final FloatArea v)
241     {
242         return new FloatLinearDensity(this.si / v.si, LinearDensityUnit.SI);
243     }
244 
245     /**
246      * Calculate the multiplication of FloatLength and FloatArea, which results in a FloatVolume scalar.
247      * @param v FloatLength scalar
248      * @return FloatVolume scalar as a multiplication of FloatLength and FloatArea
249      */
250     public final FloatVolume multiplyBy(final FloatArea v)
251     {
252         return new FloatVolume(this.si * v.si, VolumeUnit.SI);
253     }
254 
255     /**
256      * Calculate the multiplication of FloatLength and FloatForce, which results in a FloatEnergy scalar.
257      * @param v FloatLength scalar
258      * @return FloatEnergy scalar as a multiplication of FloatLength and FloatForce
259      */
260     public final FloatEnergy multiplyBy(final FloatForce v)
261     {
262         return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
263     }
264 
265     /**
266      * Calculate the multiplication of FloatLength and FloatFrequency, which results in a FloatSpeed scalar.
267      * @param v FloatLength scalar
268      * @return FloatSpeed scalar as a multiplication of FloatLength and FloatFrequency
269      */
270     public final FloatSpeed multiplyBy(final FloatFrequency v)
271     {
272         return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
273     }
274 
275     /**
276      * Calculate the division of FloatLength and FloatDuration, which results in a FloatSpeed scalar.
277      * @param v FloatLength scalar
278      * @return FloatSpeed scalar as a division of FloatLength and FloatDuration
279      */
280     public final FloatSpeed divideBy(final FloatDuration v)
281     {
282         return new FloatSpeed(this.si / v.si, SpeedUnit.SI);
283     }
284 
285     /**
286      * Calculate the division of FloatLength and FloatSpeed, which results in a FloatDuration scalar.
287      * @param v FloatLength scalar
288      * @return FloatDuration scalar as a division of FloatLength and FloatSpeed
289      */
290     public final FloatDuration divideBy(final FloatSpeed v)
291     {
292         return new FloatDuration(this.si / v.si, DurationUnit.SI);
293     }
294 
295     /**
296      * Calculate the multiplication of FloatLength and FloatMoneyPerLength, which results in a FloatMoney scalar.
297      * @param v FloatLength scalar
298      * @return FloatMoney scalar as a multiplication of FloatLength and FloatMoneyPerLength
299      */
300     public final FloatMoney multiplyBy(final FloatMoneyPerLength v)
301     {
302         return new FloatMoney(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
303     }
304 
305 }