1 package org.djunits.value.vfloat.vector; 2 3 import java.util.List; 4 import java.util.Map; 5 6 import org.djunits.unit.AngleUnit; 7 import org.djunits.unit.DirectionUnit; 8 import org.djunits.unit.scale.IdentityScale; 9 import org.djunits.value.storage.StorageType; 10 import org.djunits.value.vfloat.scalar.FloatAngle; 11 import org.djunits.value.vfloat.scalar.FloatDirection; 12 import org.djunits.value.vfloat.vector.base.FloatVectorAbs; 13 import org.djunits.value.vfloat.vector.data.FloatVectorData; 14 15 import jakarta.annotation.Generated; 16 17 /** 18 * Absolute FloatDirection Vector. 19 * <p> 20 * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br> 21 * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>. 22 * </p> 23 * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a> 24 * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a> 25 */ 26 @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z") 27 public class FloatDirectionVector 28 extends FloatVectorAbs<DirectionUnit, FloatDirection, FloatDirectionVector, AngleUnit, FloatAngle, FloatAngleVector> 29 { 30 /** */ 31 private static final long serialVersionUID = 20151003L; 32 33 /** 34 * Construct a FloatDirectionVector from an internal data object. 35 * @param data FloatVectorData; the internal data object for the vector 36 * @param displayUnit DirectionUnit; the display unit of the vector data 37 */ 38 public FloatDirectionVector(final FloatVectorData data, final DirectionUnit displayUnit) 39 { 40 super(data, displayUnit); 41 } 42 43 /* CONSTRUCTORS WITH float[] */ 44 45 /** 46 * Construct a FloatDirectionVector from a float[] object. The Float values are expressed in the displayUnit, and will be 47 * printed using the displayUnit. 48 * @param data float[]; the data for the vector, expressed in the displayUnit 49 * @param displayUnit DirectionUnit; the unit of the values in the data array, and display unit when printing 50 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 51 */ 52 public FloatDirectionVector(final float[] data, final DirectionUnit displayUnit, final StorageType storageType) 53 { 54 this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit); 55 } 56 57 /** 58 * Construct a FloatDirectionVector from a float[] object. The Float values are expressed in the displayUnit. Assume that 59 * the StorageType is DENSE since we offer the data as an array. 60 * @param data float[]; the data for the vector 61 * @param displayUnit DirectionUnit; the unit of the values in the data array, and display unit when printing 62 */ 63 public FloatDirectionVector(final float[] data, final DirectionUnit displayUnit) 64 { 65 this(data, displayUnit, StorageType.DENSE); 66 } 67 68 /** 69 * Construct a FloatDirectionVector from a float[] object with SI-unit values. 70 * @param data float[]; the data for the vector, in SI units 71 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 72 */ 73 public FloatDirectionVector(final float[] data, final StorageType storageType) 74 { 75 this(data, DirectionUnit.DEFAULT, storageType); 76 } 77 78 /** 79 * Construct a FloatDirectionVector from a float[] object with SI-unit values. Assume that the StorageType is DENSE since we 80 * offer the data as an array. 81 * @param data float[]; the data for the vector, in SI units 82 */ 83 public FloatDirectionVector(final float[] data) 84 { 85 this(data, StorageType.DENSE); 86 } 87 88 /* CONSTRUCTORS WITH FloatDirection[] */ 89 90 /** 91 * Construct a FloatDirectionVector from an array of FloatDirection objects. The FloatDirection values are each expressed in 92 * their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. 93 * @param data FloatDirection[]; the data for the vector 94 * @param displayUnit DirectionUnit; the display unit of the values when printing 95 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 96 */ 97 public FloatDirectionVector(final FloatDirection[] data, final DirectionUnit displayUnit, final StorageType storageType) 98 { 99 this(FloatVectorData.instantiate(data, storageType), displayUnit); 100 } 101 102 /** 103 * Construct a FloatDirectionVector from an array of FloatDirection objects. The FloatDirection values are each expressed in 104 * their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that 105 * the StorageType is DENSE since we offer the data as an array. 106 * @param data FloatDirection[]; the data for the vector 107 * @param displayUnit DirectionUnit; the display unit of the values when printing 108 */ 109 public FloatDirectionVector(final FloatDirection[] data, final DirectionUnit displayUnit) 110 { 111 this(data, displayUnit, StorageType.DENSE); 112 } 113 114 /** 115 * Construct a FloatDirectionVector from an array of FloatDirection objects. The FloatDirection values are each expressed in 116 * their own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer 117 * the data as an array. 118 * @param data FloatDirection[]; the data for the vector 119 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 120 */ 121 public FloatDirectionVector(final FloatDirection[] data, final StorageType storageType) 122 { 123 this(data, DirectionUnit.DEFAULT, storageType); 124 } 125 126 /** 127 * Construct a FloatDirectionVector from an array of FloatDirection objects. The FloatDirection values are each expressed in 128 * their own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that the 129 * StorageType is DENSE since we offer the data as an array. 130 * @param data FloatDirection[]; the data for the vector 131 */ 132 public FloatDirectionVector(final FloatDirection[] data) 133 { 134 this(data, StorageType.DENSE); 135 } 136 137 /* CONSTRUCTORS WITH List<Float> or List<Direction> */ 138 139 /** 140 * Construct a FloatDirectionVector from a list of Number objects or a list of FloatDirection objects. Note that the 141 * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or 142 * FloatDirection objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values 143 * in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatDirection 144 * objects, each FloatDirection has its own unit, and the displayUnit is just used for printing. The values but will always 145 * be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. 146 * @param data List<Float> or List<Direction>; the data for the vector 147 * @param displayUnit DirectionUnit; the display unit of the vector data, and the unit of the data points when the data is 148 * expressed as List<Float> or List<Number> in general 149 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 150 */ 151 public FloatDirectionVector(final List<? extends Number> data, final DirectionUnit displayUnit, 152 final StorageType storageType) 153 { 154 this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType) 155 : data.get(0) instanceof FloatDirection ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType) 156 : FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), 157 displayUnit); 158 } 159 160 /** 161 * Construct a FloatDirectionVector from a list of Number objects or a list of FloatDirection objects. Note that the 162 * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or 163 * FloatDirection objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values 164 * in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatDirection 165 * objects, each FloatDirection has its own unit, and the displayUnit is just used for printing. The values but will always 166 * be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume 167 * the storage type is DENSE since we offer the data as a List. 168 * @param data List<Float> or List<Direction>; the data for the vector 169 * @param displayUnit DirectionUnit; the display unit of the vector data, and the unit of the data points when the data is 170 * expressed as List<Float> or List<Number> in general 171 */ 172 public FloatDirectionVector(final List<? extends Number> data, final DirectionUnit displayUnit) 173 { 174 this(data, displayUnit, StorageType.DENSE); 175 } 176 177 /** 178 * Construct a FloatDirectionVector from a list of Number objects or a list of FloatDirection objects. When data contains 179 * numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatDirection objects, 180 * they each have their own unit, but will be printed using SI units or base units. The values but will always be internally 181 * stored as SI values or base values, and expressed using the display unit or base unit when printing. 182 * @param data List<Float> or List<Direction>; the data for the vector 183 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 184 */ 185 public FloatDirectionVector(final List<? extends Number> data, final StorageType storageType) 186 { 187 this(data, DirectionUnit.DEFAULT, storageType); 188 } 189 190 /** 191 * Construct a FloatDirectionVector from a list of Number objects or a list of FloatDirection objects. When data contains 192 * numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatDirection objects, 193 * they each have their own unit, but will be printed using SI units or base units. The values but will always be internally 194 * stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage 195 * type is DENSE since we offer the data as a List. 196 * @param data List<Float> or List<Direction>; the data for the vector 197 */ 198 public FloatDirectionVector(final List<? extends Number> data) 199 { 200 this(data, StorageType.DENSE); 201 } 202 203 /* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatDirection> */ 204 205 /** 206 * Construct a FloatDirectionVector from a (sparse) map of index values to Number objects or a (sparse) map of index values 207 * to of FloatDirection objects. Using index values is particularly useful for sparse vectors. The size parameter indicates 208 * the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a 209 * different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatDirection objects. 210 * In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, 211 * as well as the unit in which they will be printed. In case the map contains FloatDirection objects, each FloatDirection 212 * has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI 213 * values or base values, and expressed using the display unit or base unit when printing. 214 * @param data Map<Integer, Float> or Map<Integer, FloatDirection>; the data for the vector 215 * @param size int; the size off the vector, i.e., the highest index 216 * @param displayUnit DirectionUnit; the display unit of the vector data, and the unit of the data points when the data is 217 * expressed as List<Float> or List<Number> in general 218 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 219 */ 220 public FloatDirectionVector(final Map<Integer, ? extends Number> data, final int size, final DirectionUnit displayUnit, 221 final StorageType storageType) 222 { 223 this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 224 : data.values().iterator().next() instanceof FloatDirection 225 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 226 : FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType), 227 displayUnit); 228 } 229 230 /** 231 * Construct a FloatDirectionVector from a (sparse) map of index values to Number objects or a (sparse) map of index values 232 * to of FloatDirection objects. Using index values is particularly useful for sparse vectors. The size parameter indicates 233 * the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a 234 * different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatDirection objects. 235 * In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, 236 * as well as the unit in which they will be printed. In case the map contains FloatDirection objects, each FloatDirection 237 * has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI 238 * values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE 239 * since we offer the data as a Map. 240 * @param data Map<Integer, Float> or Map<Integer, FloatDirection>; the data for the vector 241 * @param size int; the size off the vector, i.e., the highest index 242 * @param displayUnit DirectionUnit; the display unit of the vector data, and the unit of the data points when the data is 243 * expressed as List<Float> or List<Number> in general 244 */ 245 public FloatDirectionVector(final Map<Integer, ? extends Number> data, final int size, final DirectionUnit displayUnit) 246 { 247 this(data, size, displayUnit, StorageType.SPARSE); 248 } 249 250 /** 251 * Construct a FloatDirectionVector from a (sparse) map of index values to Number objects or a (sparse) map of index values 252 * to of FloatDirection objects. Using index values is particularly useful for sparse vectors. The size parameter indicates 253 * the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as 254 * Float, assume that they are expressed using SI units. When the data consists of FloatDirection objects, they each have 255 * their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI 256 * values or base values, and expressed using the display unit or base unit when printing. 257 * @param data Map<Integer, Float> or Map<Integer, FloatDirection>; the data for the vector 258 * @param size int; the size off the vector, i.e., the highest index 259 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 260 */ 261 public FloatDirectionVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType) 262 { 263 this(data, size, DirectionUnit.DEFAULT, storageType); 264 } 265 266 /** 267 * Construct a FloatDirectionVector from a (sparse) map of index values to Number objects or a (sparse) map of index values 268 * to of FloatDirection objects. Using index values is particularly useful for sparse vectors. The size parameter indicates 269 * the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as 270 * Float, assume that they are expressed using SI units. When the data consists of FloatDirection objects, they each have 271 * their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI 272 * values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE 273 * since we offer the data as a Map. 274 * @param data Map<Integer, Float> or Map<Integer, FloatDirection>; the data for the vector 275 * @param size int; the size off the vector, i.e., the highest index 276 */ 277 public FloatDirectionVector(final Map<Integer, ? extends Number> data, final int size) 278 { 279 this(data, size, StorageType.SPARSE); 280 } 281 282 /* ****************************** Other methods ****************************** */ 283 284 @Override 285 public Class<FloatDirection> 286 287 getScalarClass() 288 { 289 return FloatDirection.class; 290 } 291 292 @Override 293 public FloatDirectionVector instantiateVector(final FloatVectorData fvd, final DirectionUnit displayUnit) 294 { 295 return new FloatDirectionVector(fvd, displayUnit); 296 } 297 298 @Override 299 public FloatDirection instantiateScalarSI(final float valueSI, final DirectionUnit displayUnit) 300 { 301 FloatDirection result = FloatDirection.instantiateSI(valueSI); 302 result.setDisplayUnit(displayUnit); 303 return result; 304 } 305 306 @Override 307 public FloatAngleVector instantiateVectorRel(final FloatVectorData fvd, final AngleUnit displayUnit) 308 { 309 return new FloatAngleVector(fvd, displayUnit); 310 } 311 312 @Override 313 public FloatAngle instantiateScalarRelSI(final float valueSI, final AngleUnit displayUnit) 314 { 315 FloatAngle result = FloatAngle.instantiateSI(valueSI); 316 result.setDisplayUnit(displayUnit); 317 return result; 318 } 319 320 }