View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.DurationUnit;
8   import org.djunits.unit.ElectricalCurrentUnit;
9   import org.djunits.unit.ElectricalInductanceUnit;
10  import org.djunits.unit.ElectricalPotentialUnit;
11  import org.djunits.unit.MagneticFluxDensityUnit;
12  import org.djunits.unit.MagneticFluxUnit;
13  import org.djunits.value.vfloat.scalar.base.FloatScalar;
14  import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
15  import org.djutils.base.NumberParser;
16  import org.djutils.exceptions.Throw;
17  
18  import jakarta.annotation.Generated;
19  
20  /**
21   * Easy access methods for the FloatMagneticFlux FloatScalar, which is relative by definition.
22   * <p>
23   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
24   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
25   * </p>
26   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
27   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
28   */
29  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
30  public class FloatMagneticFlux extends FloatScalarRel<MagneticFluxUnit, FloatMagneticFlux>
31  {
32      /** */
33      private static final long serialVersionUID = 20150901L;
34  
35      /** Constant with value zero. */
36      public static final FloatMagneticFlux ZERO = new FloatMagneticFlux(0.0f, MagneticFluxUnit.SI);
37  
38      /** Constant with value one. */
39      public static final FloatMagneticFlux ONE = new FloatMagneticFlux(1.0f, MagneticFluxUnit.SI);
40  
41      /** Constant with value NaN. */
42      @SuppressWarnings("checkstyle:constantname")
43      public static final FloatMagneticFlux NaN = new FloatMagneticFlux(Float.NaN, MagneticFluxUnit.SI);
44  
45      /** Constant with value POSITIVE_INFINITY. */
46      public static final FloatMagneticFlux POSITIVE_INFINITY =
47              new FloatMagneticFlux(Float.POSITIVE_INFINITY, MagneticFluxUnit.SI);
48  
49      /** Constant with value NEGATIVE_INFINITY. */
50      public static final FloatMagneticFlux NEGATIVE_INFINITY =
51              new FloatMagneticFlux(Float.NEGATIVE_INFINITY, MagneticFluxUnit.SI);
52  
53      /** Constant with value MAX_VALUE. */
54      public static final FloatMagneticFlux POS_MAXVALUE = new FloatMagneticFlux(Float.MAX_VALUE, MagneticFluxUnit.SI);
55  
56      /** Constant with value -MAX_VALUE. */
57      public static final FloatMagneticFlux NEG_MAXVALUE = new FloatMagneticFlux(-Float.MAX_VALUE, MagneticFluxUnit.SI);
58  
59      /**
60       * Construct FloatMagneticFlux scalar.
61       * @param value float; the float value
62       * @param unit unit for the float value
63       */
64      public FloatMagneticFlux(final float value, final MagneticFluxUnit unit)
65      {
66          super(value, unit);
67      }
68  
69      /**
70       * Construct FloatMagneticFlux scalar.
71       * @param value Scalar from which to construct this instance
72       */
73      public FloatMagneticFlux(final FloatMagneticFlux value)
74      {
75          super(value);
76      }
77  
78      /**
79       * Construct FloatMagneticFlux scalar using a double value.
80       * @param value double; the double value
81       * @param unit unit for the resulting float value
82       */
83      public FloatMagneticFlux(final double value, final MagneticFluxUnit unit)
84      {
85          super((float) value, unit);
86      }
87  
88      @Override
89      public final FloatMagneticFlux instantiateRel(final float value, final MagneticFluxUnit unit)
90      {
91          return new FloatMagneticFlux(value, unit);
92      }
93  
94      /**
95       * Construct FloatMagneticFlux scalar.
96       * @param value float; the float value in SI units
97       * @return the new scalar with the SI value
98       */
99      public static final FloatMagneticFlux instantiateSI(final float value)
100     {
101         return new FloatMagneticFlux(value, MagneticFluxUnit.SI);
102     }
103 
104     /**
105      * Interpolate between two values.
106      * @param zero the low value
107      * @param one the high value
108      * @param ratio double; the ratio between 0 and 1, inclusive
109      * @return a Scalar at the ratio between
110      */
111     public static FloatMagneticFlux interpolate(final FloatMagneticFlux zero, final FloatMagneticFlux one, final float ratio)
112     {
113         return new FloatMagneticFlux(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
114                 zero.getDisplayUnit());
115     }
116 
117     /**
118      * Return the maximum value of two relative scalars.
119      * @param r1 the first scalar
120      * @param r2 the second scalar
121      * @return the maximum value of two relative scalars
122      */
123     public static FloatMagneticFlux max(final FloatMagneticFlux r1, final FloatMagneticFlux r2)
124     {
125         return r1.gt(r2) ? r1 : r2;
126     }
127 
128     /**
129      * Return the maximum value of more than two relative scalars.
130      * @param r1 the first scalar
131      * @param r2 the second scalar
132      * @param rn the other scalars
133      * @return the maximum value of more than two relative scalars
134      */
135     public static FloatMagneticFlux max(final FloatMagneticFlux r1, final FloatMagneticFlux r2, final FloatMagneticFlux... rn)
136     {
137         FloatMagneticFlux maxr = r1.gt(r2) ? r1 : r2;
138         for (FloatMagneticFlux r : rn)
139         {
140             if (r.gt(maxr))
141             {
142                 maxr = r;
143             }
144         }
145         return maxr;
146     }
147 
148     /**
149      * Return the minimum value of two relative scalars.
150      * @param r1 the first scalar
151      * @param r2 the second scalar
152      * @return the minimum value of two relative scalars
153      */
154     public static FloatMagneticFlux min(final FloatMagneticFlux r1, final FloatMagneticFlux r2)
155     {
156         return r1.lt(r2) ? r1 : r2;
157     }
158 
159     /**
160      * Return the minimum value of more than two relative scalars.
161      * @param r1 the first scalar
162      * @param r2 the second scalar
163      * @param rn the other scalars
164      * @return the minimum value of more than two relative scalars
165      */
166     public static FloatMagneticFlux min(final FloatMagneticFlux r1, final FloatMagneticFlux r2, final FloatMagneticFlux... rn)
167     {
168         FloatMagneticFlux minr = r1.lt(r2) ? r1 : r2;
169         for (FloatMagneticFlux r : rn)
170         {
171             if (r.lt(minr))
172             {
173                 minr = r;
174             }
175         }
176         return minr;
177     }
178 
179     /**
180      * Returns a FloatMagneticFlux representation of a textual representation of a value with a unit. The String representation
181      * that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
182      * are allowed, but not required, between the value and the unit.
183      * @param text String; the textual representation to parse into a FloatMagneticFlux
184      * @return FloatMagneticFlux; the Scalar representation of the value in its unit
185      * @throws IllegalArgumentException when the text cannot be parsed
186      * @throws NullPointerException when the text argument is null
187      */
188     public static FloatMagneticFlux valueOf(final String text)
189     {
190         Throw.whenNull(text, "Error parsing FloatMagneticFlux: text to parse is null");
191         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatMagneticFlux: empty text to parse");
192         try
193         {
194             NumberParser numberParser = new NumberParser().lenient().trailing();
195             float f = numberParser.parseFloat(text);
196             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
197             MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
198             if (unit == null)
199                 throw new IllegalArgumentException("Unit " + unitString + " not found");
200             return new FloatMagneticFlux(f, unit);
201         }
202         catch (Exception exception)
203         {
204             throw new IllegalArgumentException("Error parsing FloatMagneticFlux from " + text + " using Locale "
205                     + Locale.getDefault(Locale.Category.FORMAT), exception);
206         }
207     }
208 
209     /**
210      * Returns a FloatMagneticFlux based on a value and the textual representation of the unit, which can be localized.
211      * @param value double; the value to use
212      * @param unitString String; the textual representation of the unit
213      * @return FloatMagneticFlux; the Scalar representation of the value in its unit
214      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
215      * @throws NullPointerException when the unitString argument is null
216      */
217     public static FloatMagneticFlux of(final float value, final String unitString)
218     {
219         Throw.whenNull(unitString, "Error parsing FloatMagneticFlux: unitString is null");
220         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
221                 "Error parsing FloatMagneticFlux: empty unitString");
222         MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
223         if (unit != null)
224         {
225             return new FloatMagneticFlux(value, unit);
226         }
227         throw new IllegalArgumentException("Error parsing FloatMagneticFlux with unit " + unitString);
228     }
229 
230     /**
231      * Calculate the division of FloatMagneticFlux and FloatMagneticFlux, which results in a FloatDimensionless scalar.
232      * @param v FloatMagneticFlux; scalar
233      * @return FloatDimensionless; scalar as a division of FloatMagneticFlux and FloatMagneticFlux
234      */
235     public final FloatDimensionless divide(final FloatMagneticFlux v)
236     {
237         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
238     }
239 
240     /**
241      * Calculate the division of FloatMagneticFlux and FloatElectricalPotential, which results in a FloatDuration scalar.
242      * @param v FloatMagneticFlux; scalar
243      * @return FloatDuration; scalar as a division of FloatMagneticFlux and FloatElectricalPotential
244      */
245     public final FloatDuration divide(final FloatElectricalPotential v)
246     {
247         return new FloatDuration(this.si / v.si, DurationUnit.SI);
248     }
249 
250     /**
251      * Calculate the division of FloatMagneticFlux and FloatDuration, which results in a FloatElectricalPotential scalar.
252      * @param v FloatMagneticFlux; scalar
253      * @return FloatElectricalPotential; scalar as a division of FloatMagneticFlux and FloatDuration
254      */
255     public final FloatElectricalPotential divide(final FloatDuration v)
256     {
257         return new FloatElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
258     }
259 
260     /**
261      * Calculate the division of FloatMagneticFlux and FloatArea, which results in a FloatMagneticFluxDensity scalar.
262      * @param v FloatMagneticFlux; scalar
263      * @return FloatMagneticFluxDensity; scalar as a division of FloatMagneticFlux and FloatArea
264      */
265     public final FloatMagneticFluxDensity divide(final FloatArea v)
266     {
267         return new FloatMagneticFluxDensity(this.si / v.si, MagneticFluxDensityUnit.SI);
268     }
269 
270     /**
271      * Calculate the division of FloatMagneticFlux and FloatMagneticFluxDensity, which results in a FloatArea scalar.
272      * @param v FloatMagneticFlux; scalar
273      * @return FloatArea; scalar as a division of FloatMagneticFlux and FloatMagneticFluxDensity
274      */
275     public final FloatArea divide(final FloatMagneticFluxDensity v)
276     {
277         return new FloatArea(this.si / v.si, AreaUnit.SI);
278     }
279 
280     /**
281      * Calculate the division of FloatMagneticFlux and FloatElectricalCurrent, which results in a FloatElectricalInductance
282      * scalar.
283      * @param v FloatMagneticFlux; scalar
284      * @return FloatElectricalInductance; scalar as a division of FloatMagneticFlux and FloatElectricalCurrent
285      */
286     public final FloatElectricalInductance divide(final FloatElectricalCurrent v)
287     {
288         return new FloatElectricalInductance(this.si / v.si, ElectricalInductanceUnit.SI);
289     }
290 
291     /**
292      * Calculate the division of FloatMagneticFlux and FloatElectricalInductance, which results in a FloatElectricalCurrent
293      * scalar.
294      * @param v FloatMagneticFlux; scalar
295      * @return FloatElectricalCurrent; scalar as a division of FloatMagneticFlux and FloatElectricalInductance
296      */
297     public final FloatElectricalCurrent divide(final FloatElectricalInductance v)
298     {
299         return new FloatElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
300     }
301 
302     @Override
303     public FloatSIScalar reciprocal()
304     {
305         return FloatScalar.divide(FloatDimensionless.ONE, this);
306     }
307 
308 }