View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.FlowMassUnit;
8   import org.djunits.unit.FlowVolumeUnit;
9   import org.djunits.unit.FrequencyUnit;
10  import org.djunits.unit.SpeedUnit;
11  import org.djunits.unit.VolumeUnit;
12  import org.djunits.value.vfloat.scalar.base.FloatScalar;
13  import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
14  import org.djutils.base.NumberParser;
15  import org.djutils.exceptions.Throw;
16  
17  import jakarta.annotation.Generated;
18  
19  /**
20   * Easy access methods for the FloatFlowVolume FloatScalar, which is relative by definition.
21   * <p>
22   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
23   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
24   * </p>
25   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
26   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
27   */
28  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
29  public class FloatFlowVolume extends FloatScalarRel<FlowVolumeUnit, FloatFlowVolume>
30  {
31      /** */
32      private static final long serialVersionUID = 20150901L;
33  
34      /** Constant with value zero. */
35      public static final FloatFlowVolume ZERO = new FloatFlowVolume(0.0f, FlowVolumeUnit.SI);
36  
37      /** Constant with value one. */
38      public static final FloatFlowVolume ONE = new FloatFlowVolume(1.0f, FlowVolumeUnit.SI);
39  
40      /** Constant with value NaN. */
41      @SuppressWarnings("checkstyle:constantname")
42      public static final FloatFlowVolume NaN = new FloatFlowVolume(Float.NaN, FlowVolumeUnit.SI);
43  
44      /** Constant with value POSITIVE_INFINITY. */
45      public static final FloatFlowVolume POSITIVE_INFINITY = new FloatFlowVolume(Float.POSITIVE_INFINITY, FlowVolumeUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final FloatFlowVolume NEGATIVE_INFINITY = new FloatFlowVolume(Float.NEGATIVE_INFINITY, FlowVolumeUnit.SI);
49  
50      /** Constant with value MAX_VALUE. */
51      public static final FloatFlowVolume POS_MAXVALUE = new FloatFlowVolume(Float.MAX_VALUE, FlowVolumeUnit.SI);
52  
53      /** Constant with value -MAX_VALUE. */
54      public static final FloatFlowVolume NEG_MAXVALUE = new FloatFlowVolume(-Float.MAX_VALUE, FlowVolumeUnit.SI);
55  
56      /**
57       * Construct FloatFlowVolume scalar.
58       * @param value float; the float value
59       * @param unit unit for the float value
60       */
61      public FloatFlowVolume(final float value, final FlowVolumeUnit unit)
62      {
63          super(value, unit);
64      }
65  
66      /**
67       * Construct FloatFlowVolume scalar.
68       * @param value Scalar from which to construct this instance
69       */
70      public FloatFlowVolume(final FloatFlowVolume value)
71      {
72          super(value);
73      }
74  
75      /**
76       * Construct FloatFlowVolume scalar using a double value.
77       * @param value double; the double value
78       * @param unit unit for the resulting float value
79       */
80      public FloatFlowVolume(final double value, final FlowVolumeUnit unit)
81      {
82          super((float) value, unit);
83      }
84  
85      @Override
86      public final FloatFlowVolume instantiateRel(final float value, final FlowVolumeUnit unit)
87      {
88          return new FloatFlowVolume(value, unit);
89      }
90  
91      /**
92       * Construct FloatFlowVolume scalar.
93       * @param value float; the float value in SI units
94       * @return the new scalar with the SI value
95       */
96      public static final FloatFlowVolume instantiateSI(final float value)
97      {
98          return new FloatFlowVolume(value, FlowVolumeUnit.SI);
99      }
100 
101     /**
102      * Interpolate between two values.
103      * @param zero the low value
104      * @param one the high value
105      * @param ratio double; the ratio between 0 and 1, inclusive
106      * @return a Scalar at the ratio between
107      */
108     public static FloatFlowVolume interpolate(final FloatFlowVolume zero, final FloatFlowVolume one, final float ratio)
109     {
110         return new FloatFlowVolume(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
111                 zero.getDisplayUnit());
112     }
113 
114     /**
115      * Return the maximum value of two relative scalars.
116      * @param r1 the first scalar
117      * @param r2 the second scalar
118      * @return the maximum value of two relative scalars
119      */
120     public static FloatFlowVolume max(final FloatFlowVolume r1, final FloatFlowVolume r2)
121     {
122         return r1.gt(r2) ? r1 : r2;
123     }
124 
125     /**
126      * Return the maximum value of more than two relative scalars.
127      * @param r1 the first scalar
128      * @param r2 the second scalar
129      * @param rn the other scalars
130      * @return the maximum value of more than two relative scalars
131      */
132     public static FloatFlowVolume max(final FloatFlowVolume r1, final FloatFlowVolume r2, final FloatFlowVolume... rn)
133     {
134         FloatFlowVolume maxr = r1.gt(r2) ? r1 : r2;
135         for (FloatFlowVolume r : rn)
136         {
137             if (r.gt(maxr))
138             {
139                 maxr = r;
140             }
141         }
142         return maxr;
143     }
144 
145     /**
146      * Return the minimum value of two relative scalars.
147      * @param r1 the first scalar
148      * @param r2 the second scalar
149      * @return the minimum value of two relative scalars
150      */
151     public static FloatFlowVolume min(final FloatFlowVolume r1, final FloatFlowVolume r2)
152     {
153         return r1.lt(r2) ? r1 : r2;
154     }
155 
156     /**
157      * Return the minimum value of more than two relative scalars.
158      * @param r1 the first scalar
159      * @param r2 the second scalar
160      * @param rn the other scalars
161      * @return the minimum value of more than two relative scalars
162      */
163     public static FloatFlowVolume min(final FloatFlowVolume r1, final FloatFlowVolume r2, final FloatFlowVolume... rn)
164     {
165         FloatFlowVolume minr = r1.lt(r2) ? r1 : r2;
166         for (FloatFlowVolume r : rn)
167         {
168             if (r.lt(minr))
169             {
170                 minr = r;
171             }
172         }
173         return minr;
174     }
175 
176     /**
177      * Returns a FloatFlowVolume representation of a textual representation of a value with a unit. The String representation
178      * that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
179      * are allowed, but not required, between the value and the unit.
180      * @param text String; the textual representation to parse into a FloatFlowVolume
181      * @return FloatFlowVolume; the Scalar representation of the value in its unit
182      * @throws IllegalArgumentException when the text cannot be parsed
183      * @throws NullPointerException when the text argument is null
184      */
185     public static FloatFlowVolume valueOf(final String text)
186     {
187         Throw.whenNull(text, "Error parsing FloatFlowVolume: text to parse is null");
188         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatFlowVolume: empty text to parse");
189         try
190         {
191             NumberParser numberParser = new NumberParser().lenient().trailing();
192             float f = numberParser.parseFloat(text);
193             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
194             FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
195             if (unit == null)
196                 throw new IllegalArgumentException("Unit " + unitString + " not found");
197             return new FloatFlowVolume(f, unit);
198         }
199         catch (Exception exception)
200         {
201             throw new IllegalArgumentException(
202                     "Error parsing FloatFlowVolume from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
203                     exception);
204         }
205     }
206 
207     /**
208      * Returns a FloatFlowVolume based on a value and the textual representation of the unit, which can be localized.
209      * @param value double; the value to use
210      * @param unitString String; the textual representation of the unit
211      * @return FloatFlowVolume; the Scalar representation of the value in its unit
212      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
213      * @throws NullPointerException when the unitString argument is null
214      */
215     public static FloatFlowVolume of(final float value, final String unitString)
216     {
217         Throw.whenNull(unitString, "Error parsing FloatFlowVolume: unitString is null");
218         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatFlowVolume: empty unitString");
219         FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
220         if (unit != null)
221         {
222             return new FloatFlowVolume(value, unit);
223         }
224         throw new IllegalArgumentException("Error parsing FloatFlowVolume with unit " + unitString);
225     }
226 
227     /**
228      * Calculate the division of FloatFlowVolume and FloatFlowVolume, which results in a FloatDimensionless scalar.
229      * @param v FloatFlowVolume; scalar
230      * @return FloatDimensionless; scalar as a division of FloatFlowVolume and FloatFlowVolume
231      */
232     public final FloatDimensionless divide(final FloatFlowVolume v)
233     {
234         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
235     }
236 
237     /**
238      * Calculate the multiplication of FloatFlowVolume and FloatDuration, which results in a FloatVolume scalar.
239      * @param v FloatFlowVolume; scalar
240      * @return FloatVolume; scalar as a multiplication of FloatFlowVolume and FloatDuration
241      */
242     public final FloatVolume times(final FloatDuration v)
243     {
244         return new FloatVolume(this.si * v.si, VolumeUnit.SI);
245     }
246 
247     /**
248      * Calculate the division of FloatFlowVolume and FloatFrequency, which results in a FloatVolume scalar.
249      * @param v FloatFlowVolume; scalar
250      * @return FloatVolume; scalar as a division of FloatFlowVolume and FloatFrequency
251      */
252     public final FloatVolume divide(final FloatFrequency v)
253     {
254         return new FloatVolume(this.si / v.si, VolumeUnit.SI);
255     }
256 
257     /**
258      * Calculate the division of FloatFlowVolume and FloatVolume, which results in a FloatFrequency scalar.
259      * @param v FloatFlowVolume; scalar
260      * @return FloatFrequency; scalar as a division of FloatFlowVolume and FloatVolume
261      */
262     public final FloatFrequency divide(final FloatVolume v)
263     {
264         return new FloatFrequency(this.si / v.si, FrequencyUnit.SI);
265     }
266 
267     /**
268      * Calculate the division of FloatFlowVolume and FloatArea, which results in a FloatSpeed scalar.
269      * @param v FloatFlowVolume; scalar
270      * @return FloatSpeed; scalar as a division of FloatFlowVolume and FloatArea
271      */
272     public final FloatSpeed divide(final FloatArea v)
273     {
274         return new FloatSpeed(this.si / v.si, SpeedUnit.SI);
275     }
276 
277     /**
278      * Calculate the division of FloatFlowVolume and FloatSpeed, which results in a FloatArea scalar.
279      * @param v FloatFlowVolume; scalar
280      * @return FloatArea; scalar as a division of FloatFlowVolume and FloatSpeed
281      */
282     public final FloatArea divide(final FloatSpeed v)
283     {
284         return new FloatArea(this.si / v.si, AreaUnit.SI);
285     }
286 
287     /**
288      * Calculate the multiplication of FloatFlowVolume and FloatDensity, which results in a FloatFlowMass scalar.
289      * @param v FloatFlowVolume; scalar
290      * @return FloatFlowMass; scalar as a multiplication of FloatFlowVolume and FloatDensity
291      */
292     public final FloatFlowMass times(final FloatDensity v)
293     {
294         return new FloatFlowMass(this.si * v.si, FlowMassUnit.SI);
295     }
296 
297     @Override
298     public FloatSIScalar reciprocal()
299     {
300         return FloatScalar.divide(FloatDimensionless.ONE, this);
301     }
302 
303 }