View Javadoc
1   package org.djunits.value.vfloat.matrix;
2   
3   import java.util.Collection;
4   
5   import org.djunits.unit.ElectricalPotentialUnit;
6   import org.djunits.value.storage.StorageType;
7   import org.djunits.value.vfloat.matrix.base.FloatMatrixRel;
8   import org.djunits.value.vfloat.matrix.base.FloatSparseValue;
9   import org.djunits.value.vfloat.matrix.data.FloatMatrixData;
10  import org.djunits.value.vfloat.scalar.FloatElectricalPotential;
11  import org.djunits.value.vfloat.vector.FloatElectricalPotentialVector;
12  import org.djunits.value.vfloat.vector.data.FloatVectorData;
13  
14  import jakarta.annotation.Generated;
15  
16  /**
17   * Immutable FloatFloatElectricalPotentialMatrix, a matrix of values with a ElectricalPotentialUnit.
18   * <p>
19   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
20   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
21   * </p>
22   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
23   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
24   */
25  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
26  public class FloatElectricalPotentialMatrix extends FloatMatrixRel<ElectricalPotentialUnit, FloatElectricalPotential,
27          FloatElectricalPotentialVector, FloatElectricalPotentialMatrix>
28  
29  {
30      /** */
31      private static final long serialVersionUID = 20151109L;
32  
33      /**
34       * Construct a FloatElectricalPotentialMatrix from an internal data object.
35       * @param data FloatMatrixData; the internal data object for the matrix
36       * @param displayUnit ElectricalPotentialUnit; the display unit of the matrix data
37       */
38      public FloatElectricalPotentialMatrix(final FloatMatrixData data, final ElectricalPotentialUnit displayUnit)
39      {
40          super(data, displayUnit);
41      }
42  
43      /* CONSTRUCTORS WITH float[][] */
44  
45      /**
46       * Construct a FloatElectricalPotentialMatrix from a float[][] object. The float values are expressed in the displayUnit,
47       * and will be printed using the displayUnit.
48       * @param data float[][]; the data for the matrix, expressed in the displayUnit
49       * @param displayUnit ElectricalPotentialUnit; the unit of the values in the data array, and display unit when printing
50       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
51       */
52      public FloatElectricalPotentialMatrix(final float[][] data, final ElectricalPotentialUnit displayUnit,
53              final StorageType storageType)
54      {
55          this(FloatMatrixData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
56      }
57  
58      /**
59       * Construct a FloatElectricalPotentialMatrix from a float[][] object. The float values are expressed in the displayUnit.
60       * Assume that the StorageType is DENSE since we offer the data as an array of an array.
61       * @param data float[][]; the data for the matrix
62       * @param displayUnit ElectricalPotentialUnit; the unit of the values in the data array, and display unit when printing
63       */
64      public FloatElectricalPotentialMatrix(final float[][] data, final ElectricalPotentialUnit displayUnit)
65      {
66          this(data, displayUnit, StorageType.DENSE);
67      }
68  
69      /**
70       * Construct a FloatElectricalPotentialMatrix from a float[][] object with SI-unit values.
71       * @param data float[][]; the data for the matrix, in SI units
72       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
73       */
74      public FloatElectricalPotentialMatrix(final float[][] data, final StorageType storageType)
75      {
76          this(data, ElectricalPotentialUnit.SI, storageType);
77      }
78  
79      /**
80       * Construct a FloatElectricalPotentialMatrix from a float[][] object with SI-unit values. Assume that the StorageType is
81       * DENSE since we offer the data as an array of an array.
82       * @param data float[][]; the data for the matrix, in SI units
83       */
84      public FloatElectricalPotentialMatrix(final float[][] data)
85      {
86          this(data, StorageType.DENSE);
87      }
88  
89      /* CONSTRUCTORS WITH ElectricalPotential[][] */
90  
91      /**
92       * Construct a FloatElectricalPotentialMatrix from an array of an array of FloatElectricalPotential objects. The
93       * FloatElectricalPotential values are each expressed in their own unit, but will be internally stored as SI values, all
94       * expressed in the displayUnit when printing.
95       * @param data FloatElectricalPotential[][]; the data for the matrix
96       * @param displayUnit ElectricalPotentialUnit; the display unit of the values when printing
97       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
98       */
99      public FloatElectricalPotentialMatrix(final FloatElectricalPotential[][] data, final ElectricalPotentialUnit displayUnit,
100             final StorageType storageType)
101     {
102         this(FloatMatrixData.instantiate(data, storageType), displayUnit);
103     }
104 
105     /**
106      * Construct a FloatElectricalPotentialMatrix from an array of an array of FloatElectricalPotential objects. The
107      * FloatElectricalPotential values are each expressed in their own unit, but will be internally stored as SI values, all
108      * expressed in the displayUnit when printing. Assume that the StorageType is DENSE since we offer the data as an array of
109      * an array.
110      * @param data FloatElectricalPotential[][]; the data for the matrix
111      * @param displayUnit ElectricalPotentialUnit; the display unit of the values when printing
112      */
113     public FloatElectricalPotentialMatrix(final FloatElectricalPotential[][] data, final ElectricalPotentialUnit displayUnit)
114     {
115         this(data, displayUnit, StorageType.DENSE);
116     }
117 
118     /**
119      * Construct a FloatElectricalPotentialMatrix from an array of an array of FloatElectricalPotential objects. The
120      * FloatElectricalPotential values are each expressed in their own unit, but will be internally stored as SI values, and
121      * expressed using SI units when printing. since we offer the data as an array of an array.
122      * @param data FloatElectricalPotential[][]; the data for the matrix
123      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
124      */
125     public FloatElectricalPotentialMatrix(final FloatElectricalPotential[][] data, final StorageType storageType)
126     {
127         this(data, ElectricalPotentialUnit.SI, storageType);
128     }
129 
130     /**
131      * Construct a FloatElectricalPotentialMatrix from an array of an array of FloatElectricalPotential objects. The
132      * FloatElectricalPotential values are each expressed in their own unit, but will be internally stored as SI values, and
133      * expressed using SI units when printing. Assume that the StorageType is DENSE since we offer the data as an array of an
134      * array.
135      * @param data FloatElectricalPotential[][]; the data for the matrix
136      */
137     public FloatElectricalPotentialMatrix(final FloatElectricalPotential[][] data)
138     {
139         this(data, StorageType.DENSE);
140     }
141 
142     /* CONSTRUCTORS WITH Collection<FloatSparseValue> */
143 
144     /**
145      * Construct a FloatElectricalPotentialMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit
146      * indicates the unit in which the values in the collection are expressed, as well as the unit in which they will be
147      * printed.
148      * @param data Collection&lt;FloatSparseValue&gt;; the data for the matrix
149      * @param displayUnit ElectricalPotentialUnit; the display unit of the matrix data, and the unit of the data points
150      * @param rows int; the number of rows of the matrix
151      * @param cols int; the number of columns of the matrix
152      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
153      */
154     public FloatElectricalPotentialMatrix(
155             final Collection<FloatSparseValue<ElectricalPotentialUnit, FloatElectricalPotential>> data,
156             final ElectricalPotentialUnit displayUnit, final int rows, final int cols, final StorageType storageType)
157     {
158         this(FloatMatrixData.instantiate(data, rows, cols, storageType), displayUnit);
159     }
160 
161     /**
162      * Construct a FloatElectricalPotentialMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit
163      * indicates the unit in which the values in the collection are expressed, as well as the unit in which they will be
164      * printed. Assume the storage type is SPARSE, since we offer the data as a collection.
165      * @param data Collection&lt;FloatSparseValue&gt;; the data for the matrix
166      * @param displayUnit ElectricalPotentialUnit; the display unit of the matrix data, and the unit of the data points
167      * @param rows int; the number of rows of the matrix
168      * @param cols int; the number of columns of the matrix
169      */
170     public FloatElectricalPotentialMatrix(
171             final Collection<FloatSparseValue<ElectricalPotentialUnit, FloatElectricalPotential>> data,
172             final ElectricalPotentialUnit displayUnit, final int rows, final int cols)
173     {
174         this(data, displayUnit, rows, cols, StorageType.SPARSE);
175     }
176 
177     /**
178      * Construct a FloatElectricalPotentialMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit
179      * indicates the unit in which the values in the collection are expressed, as well as the unit in which they will be
180      * printed. Use the SI unit or base unit as the displayUnit.
181      * @param data Collection&lt;FloatSparseValue&gt;; the data for the matrix
182      * @param rows int; the number of rows of the matrix
183      * @param cols int; the number of columns of the matrix
184      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
185      */
186     public FloatElectricalPotentialMatrix(
187             final Collection<FloatSparseValue<ElectricalPotentialUnit, FloatElectricalPotential>> data, final int rows,
188             final int cols, final StorageType storageType)
189     {
190         this(data, ElectricalPotentialUnit.SI, rows, cols, storageType);
191     }
192 
193     /**
194      * Construct a FloatElectricalPotentialMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit
195      * indicates the unit in which the values in the collection are expressed, as well as the unit in which they will be
196      * printed. Use the SI unit or base unit as the displayUnit. Assume the storage type is SPARSE, since we offer the data as a
197      * collection.
198      * @param data Collection&lt;FloatSparseValue&gt;; the data for the matrix
199      * @param rows int; the number of rows of the matrix
200      * @param cols int; the number of columns of the matrix
201      */
202     public FloatElectricalPotentialMatrix(
203             final Collection<FloatSparseValue<ElectricalPotentialUnit, FloatElectricalPotential>> data, final int rows,
204             final int cols)
205     {
206         this(data, ElectricalPotentialUnit.SI, rows, cols, StorageType.SPARSE);
207     }
208 
209     @Override
210     public Class<FloatElectricalPotential> getScalarClass()
211     {
212         return FloatElectricalPotential.class;
213     }
214 
215     @Override
216     public Class<FloatElectricalPotentialVector> getVectorClass()
217     {
218         return FloatElectricalPotentialVector.class;
219     }
220 
221     @Override
222     public FloatElectricalPotentialMatrix instantiateMatrix(final FloatMatrixData fmd,
223             final ElectricalPotentialUnit displayUnit)
224     {
225         return new FloatElectricalPotentialMatrix(fmd, displayUnit);
226     }
227 
228     @Override
229     public FloatElectricalPotentialVector instantiateVector(final FloatVectorData fvd,
230             final ElectricalPotentialUnit displayUnit)
231     {
232         return new FloatElectricalPotentialVector(fvd, displayUnit);
233     }
234 
235     @Override
236     public FloatElectricalPotential instantiateScalarSI(final float valueSI, final ElectricalPotentialUnit displayUnit)
237     {
238         FloatElectricalPotential result = FloatElectricalPotential.instantiateSI(valueSI);
239         result.setDisplayUnit(displayUnit);
240         return result;
241     }
242 
243 }