View Javadoc
1   package org.djunits.value.vdouble.vector;
2   
3   import java.util.List;
4   import java.util.Map;
5   
6   import org.djunits.unit.TorqueUnit;
7   import org.djunits.unit.scale.IdentityScale;
8   import org.djunits.value.storage.StorageType;
9   import org.djunits.value.vdouble.scalar.Torque;
10  import org.djunits.value.vdouble.vector.base.DoubleVectorRel;
11  import org.djunits.value.vdouble.vector.data.DoubleVectorData;
12  
13  import jakarta.annotation.Generated;
14  
15  /**
16   * Double TorqueVector, a vector of values with a TorqueUnit.
17   * <p>
18   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
19   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
20   * </p>
21   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
22   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
23   */
24  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
25  public class TorqueVector extends DoubleVectorRel<TorqueUnit, Torque, TorqueVector>
26  
27  {
28      /** */
29      private static final long serialVersionUID = 20190905L;
30  
31      /**
32       * Construct an TorqueVector from an internal data object.
33       * @param data DoubleVectorData; the internal data object for the vector
34       * @param displayUnit TorqueUnit; the display unit of the vector data
35       */
36      public TorqueVector(final DoubleVectorData data, final TorqueUnit displayUnit)
37      {
38          super(data, displayUnit);
39      }
40  
41      /* CONSTRUCTORS WITH double[] */
42  
43      /**
44       * Construct an TorqueVector from a double[] object. The double values are expressed in the displayUnit, and will be printed
45       * using the displayUnit.
46       * @param data double[]; the data for the vector, expressed in the displayUnit
47       * @param displayUnit TorqueUnit; the unit of the values in the data array, and display unit when printing
48       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
49       */
50      public TorqueVector(final double[] data, final TorqueUnit displayUnit, final StorageType storageType)
51      {
52          this(DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
53      }
54  
55      /**
56       * Construct an TorqueVector from a double[] object. The double values are expressed in the displayUnit. Assume that the
57       * StorageType is DENSE since we offer the data as an array.
58       * @param data double[]; the data for the vector
59       * @param displayUnit TorqueUnit; the unit of the values in the data array, and display unit when printing
60       */
61      public TorqueVector(final double[] data, final TorqueUnit displayUnit)
62      {
63          this(data, displayUnit, StorageType.DENSE);
64      }
65  
66      /**
67       * Construct an TorqueVector from a double[] object with SI-unit values.
68       * @param data double[]; the data for the vector, in SI units
69       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
70       */
71      public TorqueVector(final double[] data, final StorageType storageType)
72      {
73          this(data, TorqueUnit.SI, storageType);
74      }
75  
76      /**
77       * Construct an TorqueVector from a double[] object with SI-unit values. Assume that the StorageType is DENSE since we offer
78       * the data as an array.
79       * @param data double[]; the data for the vector, in SI units
80       */
81      public TorqueVector(final double[] data)
82      {
83          this(data, StorageType.DENSE);
84      }
85  
86      /* CONSTRUCTORS WITH Torque[] */
87  
88      /**
89       * Construct an TorqueVector from an array of Torque objects. The Torque values are each expressed in their own unit, but
90       * will be internally stored as SI values, all expressed in the displayUnit when printing.
91       * @param data Torque[]; the data for the vector
92       * @param displayUnit TorqueUnit; the display unit of the values when printing
93       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
94       */
95      public TorqueVector(final Torque[] data, final TorqueUnit displayUnit, final StorageType storageType)
96      {
97          this(DoubleVectorData.instantiate(data, storageType), displayUnit);
98      }
99  
100     /**
101      * Construct an TorqueVector from an array of Torque objects. The Torque values are each expressed in their own unit, but
102      * will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that the StorageType is
103      * DENSE since we offer the data as an array.
104      * @param data Torque[]; the data for the vector
105      * @param displayUnit TorqueUnit; the display unit of the values when printing
106      */
107     public TorqueVector(final Torque[] data, final TorqueUnit displayUnit)
108     {
109         this(data, displayUnit, StorageType.DENSE);
110     }
111 
112     /**
113      * Construct an TorqueVector from an array of Torque objects. The Torque values are each expressed in their own unit, but
114      * will be internally stored as SI values, and expressed using SI units when printing. since we offer the data as an array.
115      * @param data Torque[]; the data for the vector
116      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
117      */
118     public TorqueVector(final Torque[] data, final StorageType storageType)
119     {
120         this(data, TorqueUnit.SI, storageType);
121     }
122 
123     /**
124      * Construct an TorqueVector from an array of Torque objects. The Torque values are each expressed in their own unit, but
125      * will be internally stored as SI values, and expressed using SI units when printing. Assume that the StorageType is DENSE
126      * since we offer the data as an array.
127      * @param data Torque[]; the data for the vector
128      */
129     public TorqueVector(final Torque[] data)
130     {
131         this(data, StorageType.DENSE);
132     }
133 
134     /* CONSTRUCTORS WITH List<Double> or List<Torque> */
135 
136     /**
137      * Construct an TorqueVector from a list of Number objects or a list of Torque objects. Note that the displayUnit has a
138      * different meaning depending on whether the list contains Number objects (e.g., Double objects) or Torque objects. In case
139      * the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as
140      * well as the unit in which they will be printed. In case the list contains Torque objects, each Torque has its own unit,
141      * and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base
142      * values, and expressed using the display unit or base unit when printing.
143      * @param data List&lt;Double&gt; or List&lt;Torque&gt;; the data for the vector
144      * @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is
145      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
146      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
147      */
148     public TorqueVector(final List<? extends Number> data, final TorqueUnit displayUnit, final StorageType storageType)
149     {
150         this(data.size() == 0 ? DoubleVectorData.instantiate(new double[] {}, IdentityScale.SCALE, storageType)
151                 : data.get(0) instanceof Torque ? DoubleVectorData.instantiate(data, IdentityScale.SCALE, storageType)
152                         : DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType),
153                 displayUnit);
154     }
155 
156     /**
157      * Construct an TorqueVector from a list of Number objects or a list of Torque objects. Note that the displayUnit has a
158      * different meaning depending on whether the list contains Number objects (e.g., Double objects) or Torque objects. In case
159      * the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as
160      * well as the unit in which they will be printed. In case the list contains Torque objects, each Torque has its own unit,
161      * and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base
162      * values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we offer
163      * the data as a List.
164      * @param data List&lt;Double&gt; or List&lt;Torque&gt;; the data for the vector
165      * @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is
166      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
167      */
168     public TorqueVector(final List<? extends Number> data, final TorqueUnit displayUnit)
169     {
170         this(data, displayUnit, StorageType.DENSE);
171     }
172 
173     /**
174      * Construct an TorqueVector from a list of Number objects or a list of Torque objects. When data contains numbers such as
175      * Double, assume that they are expressed using SI units. When the data consists of Torque objects, they each have their own
176      * unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or
177      * base values, and expressed using the display unit or base unit when printing.
178      * @param data List&lt;Double&gt; or List&lt;Torque&gt;; the data for the vector
179      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
180      */
181     public TorqueVector(final List<? extends Number> data, final StorageType storageType)
182     {
183         this(data, TorqueUnit.SI, storageType);
184     }
185 
186     /**
187      * Construct an TorqueVector from a list of Number objects or a list of Torque objects. When data contains numbers such as
188      * Double, assume that they are expressed using SI units. When the data consists of Torque objects, they each have their own
189      * unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or
190      * base values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we
191      * offer the data as a List.
192      * @param data List&lt;Double&gt; or List&lt;Torque&gt;; the data for the vector
193      */
194     public TorqueVector(final List<? extends Number> data)
195     {
196         this(data, StorageType.DENSE);
197     }
198 
199     /* CONSTRUCTORS WITH Map<Integer, Double> or Map<Integer, Torque> */
200 
201     /**
202      * Construct an TorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
203      * Torque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of
204      * the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different
205      * meaning depending on whether the map contains Number objects (e.g., Double objects) or Torque objects. In case the map
206      * contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the
207      * unit in which they will be printed. In case the map contains Torque objects, each Torque has its own unit, and the
208      * displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and
209      * expressed using the display unit or base unit when printing.
210      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Torque&gt;; the data for the vector
211      * @param size int; the size off the vector, i.e., the highest index
212      * @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is
213      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
214      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
215      */
216     public TorqueVector(final Map<Integer, ? extends Number> data, final int size, final TorqueUnit displayUnit,
217             final StorageType storageType)
218     {
219         this(data.size() == 0 ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
220                 : data.values().iterator().next() instanceof Torque
221                         ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
222                         : DoubleVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
223                 displayUnit);
224     }
225 
226     /**
227      * Construct an TorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
228      * Torque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of
229      * the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different
230      * meaning depending on whether the map contains Number objects (e.g., Double objects) or Torque objects. In case the map
231      * contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the
232      * unit in which they will be printed. In case the map contains Torque objects, each Torque has its own unit, and the
233      * displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and
234      * expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as
235      * a Map.
236      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Torque&gt;; the data for the vector
237      * @param size int; the size off the vector, i.e., the highest index
238      * @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is
239      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
240      */
241     public TorqueVector(final Map<Integer, ? extends Number> data, final int size, final TorqueUnit displayUnit)
242     {
243         this(data, size, displayUnit, StorageType.SPARSE);
244     }
245 
246     /**
247      * Construct an TorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
248      * Torque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of
249      * the vector, since the largest index does not have to be part of the map. When data contains numbers such as Double,
250      * assume that they are expressed using SI units. When the data consists of Torque objects, they each have their own unit,
251      * but will be printed using SI units or base units. The values but will always be internally stored as SI values or base
252      * values, and expressed using the display unit or base unit when printing.
253      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Torque&gt;; the data for the vector
254      * @param size int; the size off the vector, i.e., the highest index
255      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
256      */
257     public TorqueVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
258     {
259         this(data, size, TorqueUnit.SI, storageType);
260     }
261 
262     /**
263      * Construct an TorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
264      * Torque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of
265      * the vector, since the largest index does not have to be part of the map. When data contains numbers such as Double,
266      * assume that they are expressed using SI units. When the data consists of Torque objects, they each have their own unit,
267      * but will be printed using SI units or base units. The values but will always be internally stored as SI values or base
268      * values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer
269      * the data as a Map.
270      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Torque&gt;; the data for the vector
271      * @param size int; the size off the vector, i.e., the highest index
272      */
273     public TorqueVector(final Map<Integer, ? extends Number> data, final int size)
274     {
275         this(data, size, StorageType.SPARSE);
276     }
277 
278     /* ****************************** Other methods ****************************** */
279 
280     @Override
281     public Class<Torque> getScalarClass()
282     {
283         return Torque.class;
284     }
285 
286     @Override
287     public TorqueVector instantiateVector(final DoubleVectorData dvd, final TorqueUnit displayUnit)
288     {
289         return new TorqueVector(dvd, displayUnit);
290     }
291 
292     @Override
293     public Torque instantiateScalarSI(final double valueSI, final TorqueUnit displayUnit)
294     {
295         Torque result = Torque.instantiateSI(valueSI);
296         result.setDisplayUnit(displayUnit);
297         return result;
298     }
299 
300 }