1 package org.djunits.value.vdouble.vector; 2 3 import java.util.List; 4 import java.util.Map; 5 6 import org.djunits.unit.PowerUnit; 7 import org.djunits.unit.scale.IdentityScale; 8 import org.djunits.value.storage.StorageType; 9 import org.djunits.value.vdouble.scalar.Power; 10 import org.djunits.value.vdouble.vector.base.DoubleVectorRel; 11 import org.djunits.value.vdouble.vector.data.DoubleVectorData; 12 13 import jakarta.annotation.Generated; 14 15 /** 16 * Double PowerVector, a vector of values with a PowerUnit. 17 * <p> 18 * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br> 19 * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>. 20 * </p> 21 * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a> 22 * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a> 23 */ 24 @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z") 25 public class PowerVector extends DoubleVectorRel<PowerUnit, Power, PowerVector> 26 27 { 28 /** */ 29 private static final long serialVersionUID = 20190905L; 30 31 /** 32 * Construct an PowerVector from an internal data object. 33 * @param data DoubleVectorData; the internal data object for the vector 34 * @param displayUnit PowerUnit; the display unit of the vector data 35 */ 36 public PowerVector(final DoubleVectorData data, final PowerUnit displayUnit) 37 { 38 super(data, displayUnit); 39 } 40 41 /* CONSTRUCTORS WITH double[] */ 42 43 /** 44 * Construct an PowerVector from a double[] object. The double values are expressed in the displayUnit, and will be printed 45 * using the displayUnit. 46 * @param data double[]; the data for the vector, expressed in the displayUnit 47 * @param displayUnit PowerUnit; the unit of the values in the data array, and display unit when printing 48 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 49 */ 50 public PowerVector(final double[] data, final PowerUnit displayUnit, final StorageType storageType) 51 { 52 this(DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit); 53 } 54 55 /** 56 * Construct an PowerVector from a double[] object. The double values are expressed in the displayUnit. Assume that the 57 * StorageType is DENSE since we offer the data as an array. 58 * @param data double[]; the data for the vector 59 * @param displayUnit PowerUnit; the unit of the values in the data array, and display unit when printing 60 */ 61 public PowerVector(final double[] data, final PowerUnit displayUnit) 62 { 63 this(data, displayUnit, StorageType.DENSE); 64 } 65 66 /** 67 * Construct an PowerVector from a double[] object with SI-unit values. 68 * @param data double[]; the data for the vector, in SI units 69 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 70 */ 71 public PowerVector(final double[] data, final StorageType storageType) 72 { 73 this(data, PowerUnit.SI, storageType); 74 } 75 76 /** 77 * Construct an PowerVector from a double[] object with SI-unit values. Assume that the StorageType is DENSE since we offer 78 * the data as an array. 79 * @param data double[]; the data for the vector, in SI units 80 */ 81 public PowerVector(final double[] data) 82 { 83 this(data, StorageType.DENSE); 84 } 85 86 /* CONSTRUCTORS WITH Power[] */ 87 88 /** 89 * Construct an PowerVector from an array of Power objects. The Power values are each expressed in their own unit, but will 90 * be internally stored as SI values, all expressed in the displayUnit when printing. 91 * @param data Power[]; the data for the vector 92 * @param displayUnit PowerUnit; the display unit of the values when printing 93 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 94 */ 95 public PowerVector(final Power[] data, final PowerUnit displayUnit, final StorageType storageType) 96 { 97 this(DoubleVectorData.instantiate(data, storageType), displayUnit); 98 } 99 100 /** 101 * Construct an PowerVector from an array of Power objects. The Power values are each expressed in their own unit, but will 102 * be internally stored as SI values, all expressed in the displayUnit when printing. Assume that the StorageType is DENSE 103 * since we offer the data as an array. 104 * @param data Power[]; the data for the vector 105 * @param displayUnit PowerUnit; the display unit of the values when printing 106 */ 107 public PowerVector(final Power[] data, final PowerUnit displayUnit) 108 { 109 this(data, displayUnit, StorageType.DENSE); 110 } 111 112 /** 113 * Construct an PowerVector from an array of Power objects. The Power values are each expressed in their own unit, but will 114 * be internally stored as SI values, and expressed using SI units when printing. since we offer the data as an array. 115 * @param data Power[]; the data for the vector 116 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 117 */ 118 public PowerVector(final Power[] data, final StorageType storageType) 119 { 120 this(data, PowerUnit.SI, storageType); 121 } 122 123 /** 124 * Construct an PowerVector from an array of Power objects. The Power values are each expressed in their own unit, but will 125 * be internally stored as SI values, and expressed using SI units when printing. Assume that the StorageType is DENSE since 126 * we offer the data as an array. 127 * @param data Power[]; the data for the vector 128 */ 129 public PowerVector(final Power[] data) 130 { 131 this(data, StorageType.DENSE); 132 } 133 134 /* CONSTRUCTORS WITH List<Double> or List<Power> */ 135 136 /** 137 * Construct an PowerVector from a list of Number objects or a list of Power objects. Note that the displayUnit has a 138 * different meaning depending on whether the list contains Number objects (e.g., Double objects) or Power objects. In case 139 * the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as 140 * well as the unit in which they will be printed. In case the list contains Power objects, each Power has its own unit, and 141 * the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, 142 * and expressed using the display unit or base unit when printing. 143 * @param data List<Double> or List<Power>; the data for the vector 144 * @param displayUnit PowerUnit; the display unit of the vector data, and the unit of the data points when the data is 145 * expressed as List<Double> or List<Number> in general 146 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 147 */ 148 public PowerVector(final List<? extends Number> data, final PowerUnit displayUnit, final StorageType storageType) 149 { 150 this(data.size() == 0 ? DoubleVectorData.instantiate(new double[] {}, IdentityScale.SCALE, storageType) 151 : data.get(0) instanceof Power ? DoubleVectorData.instantiate(data, IdentityScale.SCALE, storageType) 152 : DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType), 153 displayUnit); 154 } 155 156 /** 157 * Construct an PowerVector from a list of Number objects or a list of Power objects. Note that the displayUnit has a 158 * different meaning depending on whether the list contains Number objects (e.g., Double objects) or Power objects. In case 159 * the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as 160 * well as the unit in which they will be printed. In case the list contains Power objects, each Power has its own unit, and 161 * the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, 162 * and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we offer the data 163 * as a List. 164 * @param data List<Double> or List<Power>; the data for the vector 165 * @param displayUnit PowerUnit; the display unit of the vector data, and the unit of the data points when the data is 166 * expressed as List<Double> or List<Number> in general 167 */ 168 public PowerVector(final List<? extends Number> data, final PowerUnit displayUnit) 169 { 170 this(data, displayUnit, StorageType.DENSE); 171 } 172 173 /** 174 * Construct an PowerVector from a list of Number objects or a list of Power objects. When data contains numbers such as 175 * Double, assume that they are expressed using SI units. When the data consists of Power objects, they each have their own 176 * unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or 177 * base values, and expressed using the display unit or base unit when printing. 178 * @param data List<Double> or List<Power>; the data for the vector 179 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 180 */ 181 public PowerVector(final List<? extends Number> data, final StorageType storageType) 182 { 183 this(data, PowerUnit.SI, storageType); 184 } 185 186 /** 187 * Construct an PowerVector from a list of Number objects or a list of Power objects. When data contains numbers such as 188 * Double, assume that they are expressed using SI units. When the data consists of Power objects, they each have their own 189 * unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or 190 * base values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we 191 * offer the data as a List. 192 * @param data List<Double> or List<Power>; the data for the vector 193 */ 194 public PowerVector(final List<? extends Number> data) 195 { 196 this(data, StorageType.DENSE); 197 } 198 199 /* CONSTRUCTORS WITH Map<Integer, Double> or Map<Integer, Power> */ 200 201 /** 202 * Construct an PowerVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of 203 * Power objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the 204 * vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different meaning 205 * depending on whether the map contains Number objects (e.g., Double objects) or Power objects. In case the map contains 206 * Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the unit in 207 * which they will be printed. In case the map contains Power objects, each Power has its own unit, and the displayUnit is 208 * just used for printing. The values but will always be internally stored as SI values or base values, and expressed using 209 * the display unit or base unit when printing. 210 * @param data Map<Integer, Double> or Map<Integer, Power>; the data for the vector 211 * @param size int; the size off the vector, i.e., the highest index 212 * @param displayUnit PowerUnit; the display unit of the vector data, and the unit of the data points when the data is 213 * expressed as List<Double> or List<Number> in general 214 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 215 */ 216 public PowerVector(final Map<Integer, ? extends Number> data, final int size, final PowerUnit displayUnit, 217 final StorageType storageType) 218 { 219 this(data.size() == 0 ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 220 : data.values().iterator().next() instanceof Power 221 ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 222 : DoubleVectorData.instantiate(data, size, displayUnit.getScale(), storageType), 223 displayUnit); 224 } 225 226 /** 227 * Construct an PowerVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of 228 * Power objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the 229 * vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different meaning 230 * depending on whether the map contains Number objects (e.g., Double objects) or Power objects. In case the map contains 231 * Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the unit in 232 * which they will be printed. In case the map contains Power objects, each Power has its own unit, and the displayUnit is 233 * just used for printing. The values but will always be internally stored as SI values or base values, and expressed using 234 * the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as a Map. 235 * @param data Map<Integer, Double> or Map<Integer, Power>; the data for the vector 236 * @param size int; the size off the vector, i.e., the highest index 237 * @param displayUnit PowerUnit; the display unit of the vector data, and the unit of the data points when the data is 238 * expressed as List<Double> or List<Number> in general 239 */ 240 public PowerVector(final Map<Integer, ? extends Number> data, final int size, final PowerUnit displayUnit) 241 { 242 this(data, size, displayUnit, StorageType.SPARSE); 243 } 244 245 /** 246 * Construct an PowerVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of 247 * Power objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the 248 * vector, since the largest index does not have to be part of the map. When data contains numbers such as Double, assume 249 * that they are expressed using SI units. When the data consists of Power objects, they each have their own unit, but will 250 * be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and 251 * expressed using the display unit or base unit when printing. 252 * @param data Map<Integer, Double> or Map<Integer, Power>; the data for the vector 253 * @param size int; the size off the vector, i.e., the highest index 254 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 255 */ 256 public PowerVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType) 257 { 258 this(data, size, PowerUnit.SI, storageType); 259 } 260 261 /** 262 * Construct an PowerVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of 263 * Power objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the 264 * vector, since the largest index does not have to be part of the map. When data contains numbers such as Double, assume 265 * that they are expressed using SI units. When the data consists of Power objects, they each have their own unit, but will 266 * be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and 267 * expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as 268 * a Map. 269 * @param data Map<Integer, Double> or Map<Integer, Power>; the data for the vector 270 * @param size int; the size off the vector, i.e., the highest index 271 */ 272 public PowerVector(final Map<Integer, ? extends Number> data, final int size) 273 { 274 this(data, size, StorageType.SPARSE); 275 } 276 277 /* ****************************** Other methods ****************************** */ 278 279 @Override 280 public Class<Power> getScalarClass() 281 { 282 return Power.class; 283 } 284 285 @Override 286 public PowerVector instantiateVector(final DoubleVectorData dvd, final PowerUnit displayUnit) 287 { 288 return new PowerVector(dvd, displayUnit); 289 } 290 291 @Override 292 public Power instantiateScalarSI(final double valueSI, final PowerUnit displayUnit) 293 { 294 Power result = Power.instantiateSI(valueSI); 295 result.setDisplayUnit(displayUnit); 296 return result; 297 } 298 299 }