View Javadoc
1   package org.djunits.value.vdouble.vector;
2   
3   import java.util.List;
4   import java.util.Map;
5   
6   import org.djunits.unit.AngleUnit;
7   import org.djunits.unit.DirectionUnit;
8   import org.djunits.unit.scale.IdentityScale;
9   import org.djunits.value.storage.StorageType;
10  import org.djunits.value.vdouble.scalar.Angle;
11  import org.djunits.value.vdouble.scalar.Direction;
12  import org.djunits.value.vdouble.vector.base.DoubleVectorRelWithAbs;
13  import org.djunits.value.vdouble.vector.data.DoubleVectorData;
14  
15  import jakarta.annotation.Generated;
16  
17  /**
18   * Double AngleVector, a vector of values with a AngleUnit.
19   * <p>
20   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
21   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
22   * </p>
23   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
24   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
25   */
26  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
27  public class AngleVector
28          extends DoubleVectorRelWithAbs<DirectionUnit, Direction, DirectionVector, AngleUnit, Angle, AngleVector>
29  {
30      /** */
31      private static final long serialVersionUID = 20190905L;
32  
33      /**
34       * Construct an AngleVector from an internal data object.
35       * @param data DoubleVectorData; the internal data object for the vector
36       * @param displayUnit AngleUnit; the display unit of the vector data
37       */
38      public AngleVector(final DoubleVectorData data, final AngleUnit displayUnit)
39      {
40          super(data, displayUnit);
41      }
42  
43      /* CONSTRUCTORS WITH double[] */
44  
45      /**
46       * Construct an AngleVector from a double[] object. The double values are expressed in the displayUnit, and will be printed
47       * using the displayUnit.
48       * @param data double[]; the data for the vector, expressed in the displayUnit
49       * @param displayUnit AngleUnit; the unit of the values in the data array, and display unit when printing
50       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
51       */
52      public AngleVector(final double[] data, final AngleUnit displayUnit, final StorageType storageType)
53      {
54          this(DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
55      }
56  
57      /**
58       * Construct an AngleVector from a double[] object. The double values are expressed in the displayUnit. Assume that the
59       * StorageType is DENSE since we offer the data as an array.
60       * @param data double[]; the data for the vector
61       * @param displayUnit AngleUnit; the unit of the values in the data array, and display unit when printing
62       */
63      public AngleVector(final double[] data, final AngleUnit displayUnit)
64      {
65          this(data, displayUnit, StorageType.DENSE);
66      }
67  
68      /**
69       * Construct an AngleVector from a double[] object with SI-unit values.
70       * @param data double[]; the data for the vector, in SI units
71       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
72       */
73      public AngleVector(final double[] data, final StorageType storageType)
74      {
75          this(data, AngleUnit.SI, storageType);
76      }
77  
78      /**
79       * Construct an AngleVector from a double[] object with SI-unit values. Assume that the StorageType is DENSE since we offer
80       * the data as an array.
81       * @param data double[]; the data for the vector, in SI units
82       */
83      public AngleVector(final double[] data)
84      {
85          this(data, StorageType.DENSE);
86      }
87  
88      /* CONSTRUCTORS WITH Angle[] */
89  
90      /**
91       * Construct an AngleVector from an array of Angle objects. The Angle values are each expressed in their own unit, but will
92       * be internally stored as SI values, all expressed in the displayUnit when printing.
93       * @param data Angle[]; the data for the vector
94       * @param displayUnit AngleUnit; the display unit of the values when printing
95       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
96       */
97      public AngleVector(final Angle[] data, final AngleUnit displayUnit, final StorageType storageType)
98      {
99          this(DoubleVectorData.instantiate(data, storageType), displayUnit);
100     }
101 
102     /**
103      * Construct an AngleVector from an array of Angle objects. The Angle values are each expressed in their own unit, but will
104      * be internally stored as SI values, all expressed in the displayUnit when printing. Assume that the StorageType is DENSE
105      * since we offer the data as an array.
106      * @param data Angle[]; the data for the vector
107      * @param displayUnit AngleUnit; the display unit of the values when printing
108      */
109     public AngleVector(final Angle[] data, final AngleUnit displayUnit)
110     {
111         this(data, displayUnit, StorageType.DENSE);
112     }
113 
114     /**
115      * Construct an AngleVector from an array of Angle objects. The Angle values are each expressed in their own unit, but will
116      * be internally stored as SI values, and expressed using SI units when printing. since we offer the data as an array.
117      * @param data Angle[]; the data for the vector
118      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
119      */
120     public AngleVector(final Angle[] data, final StorageType storageType)
121     {
122         this(data, AngleUnit.SI, storageType);
123     }
124 
125     /**
126      * Construct an AngleVector from an array of Angle objects. The Angle values are each expressed in their own unit, but will
127      * be internally stored as SI values, and expressed using SI units when printing. Assume that the StorageType is DENSE since
128      * we offer the data as an array.
129      * @param data Angle[]; the data for the vector
130      */
131     public AngleVector(final Angle[] data)
132     {
133         this(data, StorageType.DENSE);
134     }
135 
136     /* CONSTRUCTORS WITH List<Double> or List<Angle> */
137 
138     /**
139      * Construct an AngleVector from a list of Number objects or a list of Angle objects. Note that the displayUnit has a
140      * different meaning depending on whether the list contains Number objects (e.g., Double objects) or Angle objects. In case
141      * the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as
142      * well as the unit in which they will be printed. In case the list contains Angle objects, each Angle has its own unit, and
143      * the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values,
144      * and expressed using the display unit or base unit when printing.
145      * @param data List&lt;Double&gt; or List&lt;Angle&gt;; the data for the vector
146      * @param displayUnit AngleUnit; the display unit of the vector data, and the unit of the data points when the data is
147      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
148      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
149      */
150     public AngleVector(final List<? extends Number> data, final AngleUnit displayUnit, final StorageType storageType)
151     {
152         this(data.size() == 0 ? DoubleVectorData.instantiate(new double[] {}, IdentityScale.SCALE, storageType)
153                 : data.get(0) instanceof Angle ? DoubleVectorData.instantiate(data, IdentityScale.SCALE, storageType)
154                         : DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType),
155                 displayUnit);
156     }
157 
158     /**
159      * Construct an AngleVector from a list of Number objects or a list of Angle objects. Note that the displayUnit has a
160      * different meaning depending on whether the list contains Number objects (e.g., Double objects) or Angle objects. In case
161      * the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as
162      * well as the unit in which they will be printed. In case the list contains Angle objects, each Angle has its own unit, and
163      * the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values,
164      * and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we offer the data
165      * as a List.
166      * @param data List&lt;Double&gt; or List&lt;Angle&gt;; the data for the vector
167      * @param displayUnit AngleUnit; the display unit of the vector data, and the unit of the data points when the data is
168      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
169      */
170     public AngleVector(final List<? extends Number> data, final AngleUnit displayUnit)
171     {
172         this(data, displayUnit, StorageType.DENSE);
173     }
174 
175     /**
176      * Construct an AngleVector from a list of Number objects or a list of Angle objects. When data contains numbers such as
177      * Double, assume that they are expressed using SI units. When the data consists of Angle objects, they each have their own
178      * unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or
179      * base values, and expressed using the display unit or base unit when printing.
180      * @param data List&lt;Double&gt; or List&lt;Angle&gt;; the data for the vector
181      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
182      */
183     public AngleVector(final List<? extends Number> data, final StorageType storageType)
184     {
185         this(data, AngleUnit.SI, storageType);
186     }
187 
188     /**
189      * Construct an AngleVector from a list of Number objects or a list of Angle objects. When data contains numbers such as
190      * Double, assume that they are expressed using SI units. When the data consists of Angle objects, they each have their own
191      * unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or
192      * base values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we
193      * offer the data as a List.
194      * @param data List&lt;Double&gt; or List&lt;Angle&gt;; the data for the vector
195      */
196     public AngleVector(final List<? extends Number> data)
197     {
198         this(data, StorageType.DENSE);
199     }
200 
201     /* CONSTRUCTORS WITH Map<Integer, Double> or Map<Integer, Angle> */
202 
203     /**
204      * Construct an AngleVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
205      * Angle objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the
206      * vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different meaning
207      * depending on whether the map contains Number objects (e.g., Double objects) or Angle objects. In case the map contains
208      * Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the unit in
209      * which they will be printed. In case the map contains Angle objects, each Angle has its own unit, and the displayUnit is
210      * just used for printing. The values but will always be internally stored as SI values or base values, and expressed using
211      * the display unit or base unit when printing.
212      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Angle&gt;; the data for the vector
213      * @param size int; the size off the vector, i.e., the highest index
214      * @param displayUnit AngleUnit; the display unit of the vector data, and the unit of the data points when the data is
215      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
216      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
217      */
218     public AngleVector(final Map<Integer, ? extends Number> data, final int size, final AngleUnit displayUnit,
219             final StorageType storageType)
220     {
221         this(data.size() == 0 ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
222                 : data.values().iterator().next() instanceof Angle
223                         ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
224                         : DoubleVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
225                 displayUnit);
226     }
227 
228     /**
229      * Construct an AngleVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
230      * Angle objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the
231      * vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different meaning
232      * depending on whether the map contains Number objects (e.g., Double objects) or Angle objects. In case the map contains
233      * Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the unit in
234      * which they will be printed. In case the map contains Angle objects, each Angle has its own unit, and the displayUnit is
235      * just used for printing. The values but will always be internally stored as SI values or base values, and expressed using
236      * the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as a Map.
237      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Angle&gt;; the data for the vector
238      * @param size int; the size off the vector, i.e., the highest index
239      * @param displayUnit AngleUnit; the display unit of the vector data, and the unit of the data points when the data is
240      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
241      */
242     public AngleVector(final Map<Integer, ? extends Number> data, final int size, final AngleUnit displayUnit)
243     {
244         this(data, size, displayUnit, StorageType.SPARSE);
245     }
246 
247     /**
248      * Construct an AngleVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
249      * Angle objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the
250      * vector, since the largest index does not have to be part of the map. When data contains numbers such as Double, assume
251      * that they are expressed using SI units. When the data consists of Angle objects, they each have their own unit, but will
252      * be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and
253      * expressed using the display unit or base unit when printing.
254      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Angle&gt;; the data for the vector
255      * @param size int; the size off the vector, i.e., the highest index
256      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
257      */
258     public AngleVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
259     {
260         this(data, size, AngleUnit.SI, storageType);
261     }
262 
263     /**
264      * Construct an AngleVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
265      * Angle objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the
266      * vector, since the largest index does not have to be part of the map. When data contains numbers such as Double, assume
267      * that they are expressed using SI units. When the data consists of Angle objects, they each have their own unit, but will
268      * be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and
269      * expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as
270      * a Map.
271      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Angle&gt;; the data for the vector
272      * @param size int; the size off the vector, i.e., the highest index
273      */
274     public AngleVector(final Map<Integer, ? extends Number> data, final int size)
275     {
276         this(data, size, StorageType.SPARSE);
277     }
278 
279     /* ****************************** Other methods ****************************** */
280 
281     @Override
282     public Class<Angle> getScalarClass()
283     {
284         return Angle.class;
285     }
286 
287     @Override
288     public AngleVector instantiateVector(final DoubleVectorData dvd, final AngleUnit displayUnit)
289     {
290         return new AngleVector(dvd, displayUnit);
291     }
292 
293     @Override
294     public Angle instantiateScalarSI(final double valueSI, final AngleUnit displayUnit)
295     {
296         Angle result = Angle.instantiateSI(valueSI);
297         result.setDisplayUnit(displayUnit);
298         return result;
299     }
300 
301     @Override
302     public DirectionVector instantiateVectorAbs(final DoubleVectorData dvd, final DirectionUnit displayUnit)
303     {
304         return new DirectionVector(dvd, displayUnit);
305     }
306 
307     @Override
308     public Direction instantiateScalarAbsSI(final double valueSI, final DirectionUnit displayUnit)
309     {
310         Direction result = Direction.instantiateSI(valueSI);
311         result.setDisplayUnit(displayUnit);
312         return result;
313     }
314 
315 }