View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DimensionlessUnit;
6   import org.djunits.unit.ElectricalChargeUnit;
7   import org.djunits.unit.ElectricalConductanceUnit;
8   import org.djunits.unit.ElectricalCurrentUnit;
9   import org.djunits.unit.ElectricalPotentialUnit;
10  import org.djunits.unit.PowerUnit;
11  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
12  import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
13  import org.djutils.base.NumberParser;
14  import org.djutils.exceptions.Throw;
15  
16  import jakarta.annotation.Generated;
17  
18  /**
19   * Easy access methods for the ElectricalCurrent DoubleScalar, which is relative by definition.
20   * <p>
21   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
22   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
23   * </p>
24   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
25   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
26   */
27  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
28  public class ElectricalCurrent extends DoubleScalarRel<ElectricalCurrentUnit, ElectricalCurrent>
29  {
30      /** */
31      private static final long serialVersionUID = 20150905L;
32  
33      /** Constant with value zero. */
34      public static final ElectricalCurrent ZERO = new ElectricalCurrent(0.0, ElectricalCurrentUnit.SI);
35  
36      /** Constant with value one. */
37      public static final ElectricalCurrent ONE = new ElectricalCurrent(1.0, ElectricalCurrentUnit.SI);
38  
39      /** Constant with value NaN. */
40      @SuppressWarnings("checkstyle:constantname")
41      public static final ElectricalCurrent NaN = new ElectricalCurrent(Double.NaN, ElectricalCurrentUnit.SI);
42  
43      /** Constant with value POSITIVE_INFINITY. */
44      public static final ElectricalCurrent POSITIVE_INFINITY =
45              new ElectricalCurrent(Double.POSITIVE_INFINITY, ElectricalCurrentUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final ElectricalCurrent NEGATIVE_INFINITY =
49              new ElectricalCurrent(Double.NEGATIVE_INFINITY, ElectricalCurrentUnit.SI);
50  
51      /** Constant with value MAX_VALUE. */
52      public static final ElectricalCurrent POS_MAXVALUE = new ElectricalCurrent(Double.MAX_VALUE, ElectricalCurrentUnit.SI);
53  
54      /** Constant with value -MAX_VALUE. */
55      public static final ElectricalCurrent NEG_MAXVALUE = new ElectricalCurrent(-Double.MAX_VALUE, ElectricalCurrentUnit.SI);
56  
57      /**
58       * Construct ElectricalCurrent scalar.
59       * @param value double; the double value
60       * @param unit ElectricalCurrentUnit; unit for the double value
61       */
62      public ElectricalCurrent(final double value, final ElectricalCurrentUnit unit)
63      {
64          super(value, unit);
65      }
66  
67      /**
68       * Construct ElectricalCurrent scalar.
69       * @param value ElectricalCurrent; Scalar from which to construct this instance
70       */
71      public ElectricalCurrent(final ElectricalCurrent value)
72      {
73          super(value);
74      }
75  
76      @Override
77      public final ElectricalCurrent instantiateRel(final double value, final ElectricalCurrentUnit unit)
78      {
79          return new ElectricalCurrent(value, unit);
80      }
81  
82      /**
83       * Construct ElectricalCurrent scalar.
84       * @param value double; the double value in SI units
85       * @return ElectricalCurrent; the new scalar with the SI value
86       */
87      public static final ElectricalCurrent instantiateSI(final double value)
88      {
89          return new ElectricalCurrent(value, ElectricalCurrentUnit.SI);
90      }
91  
92      /**
93       * Interpolate between two values.
94       * @param zero ElectricalCurrent; the low value
95       * @param one ElectricalCurrent; the high value
96       * @param ratio double; the ratio between 0 and 1, inclusive
97       * @return ElectricalCurrent; a Scalar at the ratio between
98       */
99      public static ElectricalCurrent interpolate(final ElectricalCurrent zero, final ElectricalCurrent one, final double ratio)
100     {
101         return new ElectricalCurrent(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
102                 zero.getDisplayUnit());
103     }
104 
105     /**
106      * Return the maximum value of two relative scalars.
107      * @param r1 ElectricalCurrent; the first scalar
108      * @param r2 ElectricalCurrent; the second scalar
109      * @return ElectricalCurrent; the maximum value of two relative scalars
110      */
111     public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2)
112     {
113         return r1.gt(r2) ? r1 : r2;
114     }
115 
116     /**
117      * Return the maximum value of more than two relative scalars.
118      * @param r1 ElectricalCurrent; the first scalar
119      * @param r2 ElectricalCurrent; the second scalar
120      * @param rn ElectricalCurrent...; the other scalars
121      * @return ElectricalCurrent; the maximum value of more than two relative scalars
122      */
123     public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
124     {
125         ElectricalCurrent maxr = r1.gt(r2) ? r1 : r2;
126         for (ElectricalCurrent r : rn)
127         {
128             if (r.gt(maxr))
129             {
130                 maxr = r;
131             }
132         }
133         return maxr;
134     }
135 
136     /**
137      * Return the minimum value of two relative scalars.
138      * @param r1 ElectricalCurrent; the first scalar
139      * @param r2 ElectricalCurrent; the second scalar
140      * @return ElectricalCurrent; the minimum value of two relative scalars
141      */
142     public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2)
143     {
144         return r1.lt(r2) ? r1 : r2;
145     }
146 
147     /**
148      * Return the minimum value of more than two relative scalars.
149      * @param r1 ElectricalCurrent; the first scalar
150      * @param r2 ElectricalCurrent; the second scalar
151      * @param rn ElectricalCurrent...; the other scalars
152      * @return ElectricalCurrent; the minimum value of more than two relative scalars
153      */
154     public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
155     {
156         ElectricalCurrent minr = r1.lt(r2) ? r1 : r2;
157         for (ElectricalCurrent r : rn)
158         {
159             if (r.lt(minr))
160             {
161                 minr = r;
162             }
163         }
164         return minr;
165     }
166 
167     /**
168      * Returns a ElectricalCurrent representation of a textual representation of a value with a unit. The String representation
169      * that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
170      * are allowed, but not required, between the value and the unit.
171      * @param text String; the textual representation to parse into a ElectricalCurrent
172      * @return ElectricalCurrent; the Scalar representation of the value in its unit
173      * @throws IllegalArgumentException when the text cannot be parsed
174      * @throws NullPointerException when the text argument is null
175      */
176     public static ElectricalCurrent valueOf(final String text)
177     {
178         Throw.whenNull(text, "Error parsing ElectricalCurrent: text to parse is null");
179         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing ElectricalCurrent: empty text to parse");
180         try
181         {
182             NumberParser numberParser = new NumberParser().lenient().trailing();
183             double d = numberParser.parseDouble(text);
184             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
185             ElectricalCurrentUnit unit = ElectricalCurrentUnit.BASE.getUnitByAbbreviation(unitString);
186             if (unit == null)
187                 throw new IllegalArgumentException("Unit " + unitString + " not found");
188             return new ElectricalCurrent(d, unit);
189         }
190         catch (Exception exception)
191         {
192             throw new IllegalArgumentException("Error parsing ElectricalCurrent from " + text + " using Locale "
193                     + Locale.getDefault(Locale.Category.FORMAT), exception);
194         }
195     }
196 
197     /**
198      * Returns a ElectricalCurrent based on a value and the textual representation of the unit, which can be localized.
199      * @param value double; the value to use
200      * @param unitString String; the textual representation of the unit
201      * @return ElectricalCurrent; the Scalar representation of the value in its unit
202      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
203      * @throws NullPointerException when the unitString argument is null
204      */
205     public static ElectricalCurrent of(final double value, final String unitString)
206     {
207         Throw.whenNull(unitString, "Error parsing ElectricalCurrent: unitString is null");
208         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
209                 "Error parsing ElectricalCurrent: empty unitString");
210         ElectricalCurrentUnit unit = ElectricalCurrentUnit.BASE.getUnitByAbbreviation(unitString);
211         if (unit != null)
212         {
213             return new ElectricalCurrent(value, unit);
214         }
215         throw new IllegalArgumentException("Error parsing ElectricalCurrent with unit " + unitString);
216     }
217 
218     /**
219      * Calculate the division of ElectricalCurrent and ElectricalCurrent, which results in a Dimensionless scalar.
220      * @param v ElectricalCurrent; scalar
221      * @return Dimensionless; scalar as a division of ElectricalCurrent and ElectricalCurrent
222      */
223     public final Dimensionless divide(final ElectricalCurrent v)
224     {
225         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
226     }
227 
228     /**
229      * Calculate the multiplication of ElectricalCurrent and ElectricalPotential, which results in a Power scalar.
230      * @param v ElectricalCurrent; scalar
231      * @return Power; scalar as a multiplication of ElectricalCurrent and ElectricalPotential
232      */
233     public final Power times(final ElectricalPotential v)
234     {
235         return new Power(this.si * v.si, PowerUnit.SI);
236     }
237 
238     /**
239      * Calculate the multiplication of ElectricalCurrent and Duration, which results in a ElectricalCharge scalar.
240      * @param v ElectricalCurrent; scalar
241      * @return ElectricalCharge; scalar as a multiplication of ElectricalCurrent and Duration
242      */
243     public final ElectricalCharge times(final Duration v)
244     {
245         return new ElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
246     }
247 
248     /**
249      * Calculate the multiplication of ElectricalCurrent and ElectricalResistance, which results in a ElectricalPotential
250      * scalar.
251      * @param v ElectricalCurrent; scalar
252      * @return ElectricalPotential; scalar as a multiplication of ElectricalCurrent and ElectricalResistance
253      */
254     public final ElectricalPotential times(final ElectricalResistance v)
255     {
256         return new ElectricalPotential(this.si * v.si, ElectricalPotentialUnit.SI);
257     }
258 
259     /**
260      * Calculate the division of ElectricalCurrent and ElectricalPotential, which results in a ElectricalConductance scalar.
261      * @param v ElectricalCurrent; scalar
262      * @return ElectricalConductance; scalar as a division of ElectricalCurrent and ElectricalPotential
263      */
264     public final ElectricalConductance divide(final ElectricalPotential v)
265     {
266         return new ElectricalConductance(this.si / v.si, ElectricalConductanceUnit.SI);
267     }
268 
269     /**
270      * Calculate the division of ElectricalCurrent and ElectricalConductance, which results in a ElectricalPotential scalar.
271      * @param v ElectricalCurrent; scalar
272      * @return ElectricalPotential; scalar as a division of ElectricalCurrent and ElectricalConductance
273      */
274     public final ElectricalPotential divide(final ElectricalConductance v)
275     {
276         return new ElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
277     }
278 
279     @Override
280     public SIScalar reciprocal()
281     {
282         return DoubleScalar.divide(Dimensionless.ONE, this);
283     }
284 
285 }