Class ElectricalResistanceVector

All Implemented Interfaces:
Serializable, Cloneable, Iterable<ElectricalResistance>, Relative<ElectricalResistanceUnit,ElectricalResistanceVector>, Value<ElectricalResistanceUnit,ElectricalResistanceVector>

@Generated(value="org.djunits.generator.GenerateDJUNIT", date="2023-07-23T14:06:38.224104100Z") public class ElectricalResistanceVector extends DoubleVectorRel<ElectricalResistanceUnit,ElectricalResistance,ElectricalResistanceVector>
Double ElectricalResistanceVector, a vector of values with a ElectricalResistanceUnit.

Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
BSD-style license. See DJUNITS License.

Author:
Alexander Verbraeck, Peter Knoppers
See Also:
  • Constructor Details

    • ElectricalResistanceVector

      public ElectricalResistanceVector(DoubleVectorData data, ElectricalResistanceUnit displayUnit)
      Construct an ElectricalResistanceVector from an internal data object.
      Parameters:
      data - DoubleVectorData; the internal data object for the vector
      displayUnit - ElectricalResistanceUnit; the display unit of the vector data
    • ElectricalResistanceVector

      public ElectricalResistanceVector(double[] data, ElectricalResistanceUnit displayUnit, StorageType storageType)
      Construct an ElectricalResistanceVector from a double[] object. The double values are expressed in the displayUnit, and will be printed using the displayUnit.
      Parameters:
      data - double[]; the data for the vector, expressed in the displayUnit
      displayUnit - ElectricalResistanceUnit; the unit of the values in the data array, and display unit when printing
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(double[] data, ElectricalResistanceUnit displayUnit)
      Construct an ElectricalResistanceVector from a double[] object. The double values are expressed in the displayUnit. Assume that the StorageType is DENSE since we offer the data as an array.
      Parameters:
      data - double[]; the data for the vector
      displayUnit - ElectricalResistanceUnit; the unit of the values in the data array, and display unit when printing
    • ElectricalResistanceVector

      public ElectricalResistanceVector(double[] data, StorageType storageType)
      Construct an ElectricalResistanceVector from a double[] object with SI-unit values.
      Parameters:
      data - double[]; the data for the vector, in SI units
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(double[] data)
      Construct an ElectricalResistanceVector from a double[] object with SI-unit values. Assume that the StorageType is DENSE since we offer the data as an array.
      Parameters:
      data - double[]; the data for the vector, in SI units
    • ElectricalResistanceVector

      public ElectricalResistanceVector(ElectricalResistance[] data, ElectricalResistanceUnit displayUnit, StorageType storageType)
      Construct an ElectricalResistanceVector from an array of ElectricalResistance objects. The ElectricalResistance values are each expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
      Parameters:
      data - ElectricalResistance[]; the data for the vector
      displayUnit - ElectricalResistanceUnit; the display unit of the values when printing
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(ElectricalResistance[] data, ElectricalResistanceUnit displayUnit)
      Construct an ElectricalResistanceVector from an array of ElectricalResistance objects. The ElectricalResistance values are each expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that the StorageType is DENSE since we offer the data as an array.
      Parameters:
      data - ElectricalResistance[]; the data for the vector
      displayUnit - ElectricalResistanceUnit; the display unit of the values when printing
    • ElectricalResistanceVector

      public ElectricalResistanceVector(ElectricalResistance[] data, StorageType storageType)
      Construct an ElectricalResistanceVector from an array of ElectricalResistance objects. The ElectricalResistance values are each expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer the data as an array.
      Parameters:
      data - ElectricalResistance[]; the data for the vector
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(ElectricalResistance[] data)
      Construct an ElectricalResistanceVector from an array of ElectricalResistance objects. The ElectricalResistance values are each expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that the StorageType is DENSE since we offer the data as an array.
      Parameters:
      data - ElectricalResistance[]; the data for the vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(List<? extends Number> data, ElectricalResistanceUnit displayUnit, StorageType storageType)
      Construct an ElectricalResistanceVector from a list of Number objects or a list of ElectricalResistance objects. Note that the displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Double objects) or ElectricalResistance objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as well as the unit in which they will be printed. In case the list contains ElectricalResistance objects, each ElectricalResistance has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
      Parameters:
      data - List<Double> or List<ElectricalResistance>; the data for the vector
      displayUnit - ElectricalResistanceUnit; the display unit of the vector data, and the unit of the data points when the data is expressed as List<Double> or List<Number> in general
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(List<? extends Number> data, ElectricalResistanceUnit displayUnit)
      Construct an ElectricalResistanceVector from a list of Number objects or a list of ElectricalResistance objects. Note that the displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Double objects) or ElectricalResistance objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as well as the unit in which they will be printed. In case the list contains ElectricalResistance objects, each ElectricalResistance has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we offer the data as a List.
      Parameters:
      data - List<Double> or List<ElectricalResistance>; the data for the vector
      displayUnit - ElectricalResistanceUnit; the display unit of the vector data, and the unit of the data points when the data is expressed as List<Double> or List<Number> in general
    • ElectricalResistanceVector

      public ElectricalResistanceVector(List<? extends Number> data, StorageType storageType)
      Construct an ElectricalResistanceVector from a list of Number objects or a list of ElectricalResistance objects. When data contains numbers such as Double, assume that they are expressed using SI units. When the data consists of ElectricalResistance objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
      Parameters:
      data - List<Double> or List<ElectricalResistance>; the data for the vector
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(List<? extends Number> data)
      Construct an ElectricalResistanceVector from a list of Number objects or a list of ElectricalResistance objects. When data contains numbers such as Double, assume that they are expressed using SI units. When the data consists of ElectricalResistance objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we offer the data as a List.
      Parameters:
      data - List<Double> or List<ElectricalResistance>; the data for the vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(Map<Integer,? extends Number> data, int size, ElectricalResistanceUnit displayUnit, StorageType storageType)
      Construct an ElectricalResistanceVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of ElectricalResistance objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different meaning depending on whether the map contains Number objects (e.g., Double objects) or ElectricalResistance objects. In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the unit in which they will be printed. In case the map contains ElectricalResistance objects, each ElectricalResistance has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
      Parameters:
      data - Map<Integer, Double> or Map<Integer, ElectricalResistance>; the data for the vector
      size - int; the size off the vector, i.e., the highest index
      displayUnit - ElectricalResistanceUnit; the display unit of the vector data, and the unit of the data points when the data is expressed as List<Double> or List<Number> in general
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(Map<Integer,? extends Number> data, int size, ElectricalResistanceUnit displayUnit)
      Construct an ElectricalResistanceVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of ElectricalResistance objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different meaning depending on whether the map contains Number objects (e.g., Double objects) or ElectricalResistance objects. In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the unit in which they will be printed. In case the map contains ElectricalResistance objects, each ElectricalResistance has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as a Map.
      Parameters:
      data - Map<Integer, Double> or Map<Integer, ElectricalResistance>; the data for the vector
      size - int; the size off the vector, i.e., the highest index
      displayUnit - ElectricalResistanceUnit; the display unit of the vector data, and the unit of the data points when the data is expressed as List<Double> or List<Number> in general
    • ElectricalResistanceVector

      public ElectricalResistanceVector(Map<Integer,? extends Number> data, int size, StorageType storageType)
      Construct an ElectricalResistanceVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of ElectricalResistance objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as Double, assume that they are expressed using SI units. When the data consists of ElectricalResistance objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
      Parameters:
      data - Map<Integer, Double> or Map<Integer, ElectricalResistance>; the data for the vector
      size - int; the size off the vector, i.e., the highest index
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • ElectricalResistanceVector

      public ElectricalResistanceVector(Map<Integer,? extends Number> data, int size)
      Construct an ElectricalResistanceVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of ElectricalResistance objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as Double, assume that they are expressed using SI units. When the data consists of ElectricalResistance objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as a Map.
      Parameters:
      data - Map<Integer, Double> or Map<Integer, ElectricalResistance>; the data for the vector
      size - int; the size off the vector, i.e., the highest index
  • Method Details