1 package org.djunits.value.vfloat.vector; 2 3 import java.util.List; 4 import java.util.Map; 5 6 import org.djunits.unit.TorqueUnit; 7 import org.djunits.unit.scale.IdentityScale; 8 import org.djunits.value.storage.StorageType; 9 import org.djunits.value.vfloat.scalar.FloatTorque; 10 import org.djunits.value.vfloat.vector.base.FloatVectorRel; 11 import org.djunits.value.vfloat.vector.data.FloatVectorData; 12 13 import jakarta.annotation.Generated; 14 15 /** 16 * Immutable Float FloatTorqueVector, a vector of values with a TorqueUnit. 17 * <p> 18 * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br> 19 * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>. 20 * </p> 21 * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a> 22 * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a> 23 */ 24 @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z") 25 public class FloatTorqueVector extends FloatVectorRel<TorqueUnit, FloatTorque, FloatTorqueVector> 26 27 { 28 /** */ 29 private static final long serialVersionUID = 20190905L; 30 31 /** 32 * Construct a FloatTorqueVector from an internal data object. 33 * @param data FloatVectorData; the internal data object for the vector 34 * @param displayUnit TorqueUnit; the display unit of the vector data 35 */ 36 public FloatTorqueVector(final FloatVectorData data, final TorqueUnit displayUnit) 37 { 38 super(data, displayUnit); 39 } 40 41 /* CONSTRUCTORS WITH float[] */ 42 43 /** 44 * Construct a FloatTorqueVector from a float[] object. The Float values are expressed in the displayUnit, and will be 45 * printed using the displayUnit. 46 * @param data float[]; the data for the vector, expressed in the displayUnit 47 * @param displayUnit TorqueUnit; the unit of the values in the data array, and display unit when printing 48 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 49 */ 50 public FloatTorqueVector(final float[] data, final TorqueUnit displayUnit, final StorageType storageType) 51 { 52 this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit); 53 } 54 55 /** 56 * Construct a FloatTorqueVector from a float[] object. The Float values are expressed in the displayUnit. Assume that the 57 * StorageType is DENSE since we offer the data as an array. 58 * @param data float[]; the data for the vector 59 * @param displayUnit TorqueUnit; the unit of the values in the data array, and display unit when printing 60 */ 61 public FloatTorqueVector(final float[] data, final TorqueUnit displayUnit) 62 { 63 this(data, displayUnit, StorageType.DENSE); 64 } 65 66 /** 67 * Construct a FloatTorqueVector from a float[] object with SI-unit values. 68 * @param data float[]; the data for the vector, in SI units 69 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 70 */ 71 public FloatTorqueVector(final float[] data, final StorageType storageType) 72 { 73 this(data, TorqueUnit.SI, storageType); 74 } 75 76 /** 77 * Construct a FloatTorqueVector from a float[] object with SI-unit values. Assume that the StorageType is DENSE since we 78 * offer the data as an array. 79 * @param data float[]; the data for the vector, in SI units 80 */ 81 public FloatTorqueVector(final float[] data) 82 { 83 this(data, StorageType.DENSE); 84 } 85 86 /* CONSTRUCTORS WITH FloatTorque[] */ 87 88 /** 89 * Construct a FloatTorqueVector from an array of FloatTorque objects. The FloatTorque values are each expressed in their 90 * own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. 91 * @param data FloatTorque[]; the data for the vector 92 * @param displayUnit TorqueUnit; the display unit of the values when printing 93 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 94 */ 95 public FloatTorqueVector(final FloatTorque[] data, final TorqueUnit displayUnit, final StorageType storageType) 96 { 97 this(FloatVectorData.instantiate(data, storageType), displayUnit); 98 } 99 100 /** 101 * Construct a FloatTorqueVector from an array of FloatTorque objects. The FloatTorque values are each expressed in their 102 * own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that the 103 * StorageType is DENSE since we offer the data as an array. 104 * @param data FloatTorque[]; the data for the vector 105 * @param displayUnit TorqueUnit; the display unit of the values when printing 106 */ 107 public FloatTorqueVector(final FloatTorque[] data, final TorqueUnit displayUnit) 108 { 109 this(data, displayUnit, StorageType.DENSE); 110 } 111 112 /** 113 * Construct a FloatTorqueVector from an array of FloatTorque objects. The FloatTorque values are each expressed in their 114 * own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer the data 115 * as an array. 116 * @param data FloatTorque[]; the data for the vector 117 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 118 */ 119 public FloatTorqueVector(final FloatTorque[] data, final StorageType storageType) 120 { 121 this(data, TorqueUnit.SI, storageType); 122 } 123 124 /** 125 * Construct a FloatTorqueVector from an array of FloatTorque objects. The FloatTorque values are each expressed in their 126 * own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that the 127 * StorageType is DENSE since we offer the data as an array. 128 * @param data FloatTorque[]; the data for the vector 129 */ 130 public FloatTorqueVector(final FloatTorque[] data) 131 { 132 this(data, StorageType.DENSE); 133 } 134 135 /* CONSTRUCTORS WITH List<Float> or List<Torque> */ 136 137 /** 138 * Construct a FloatTorqueVector from a list of Number objects or a list of FloatTorque objects. Note that the displayUnit 139 * has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or FloatTorque 140 * objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are 141 * expressed, as well as the unit in which they will be printed. In case the list contains FloatTorque objects, each 142 * FloatTorque has its own unit, and the displayUnit is just used for printing. The values but will always be internally 143 * stored as SI values or base values, and expressed using the display unit or base unit when printing. 144 * @param data List<Float> or List<Torque>; the data for the vector 145 * @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is 146 * expressed as List<Float> or List<Number> in general 147 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 148 */ 149 public FloatTorqueVector(final List<? extends Number> data, final TorqueUnit displayUnit, final StorageType storageType) 150 { 151 this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType) 152 : data.get(0) instanceof FloatTorque ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType) 153 : FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), 154 displayUnit); 155 } 156 157 /** 158 * Construct a FloatTorqueVector from a list of Number objects or a list of FloatTorque objects. Note that the displayUnit 159 * has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or FloatTorque 160 * objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are 161 * expressed, as well as the unit in which they will be printed. In case the list contains FloatTorque objects, each 162 * FloatTorque has its own unit, and the displayUnit is just used for printing. The values but will always be internally 163 * stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage 164 * type is DENSE since we offer the data as a List. 165 * @param data List<Float> or List<Torque>; the data for the vector 166 * @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is 167 * expressed as List<Float> or List<Number> in general 168 */ 169 public FloatTorqueVector(final List<? extends Number> data, final TorqueUnit displayUnit) 170 { 171 this(data, displayUnit, StorageType.DENSE); 172 } 173 174 /** 175 * Construct a FloatTorqueVector from a list of Number objects or a list of FloatTorque objects. When data contains numbers 176 * such as Float, assume that they are expressed using SI units. When the data consists of FloatTorque objects, they each 177 * have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as 178 * SI values or base values, and expressed using the display unit or base unit when printing. 179 * @param data List<Float> or List<Torque>; the data for the vector 180 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 181 */ 182 public FloatTorqueVector(final List<? extends Number> data, final StorageType storageType) 183 { 184 this(data, TorqueUnit.SI, storageType); 185 } 186 187 /** 188 * Construct a FloatTorqueVector from a list of Number objects or a list of FloatTorque objects. When data contains numbers 189 * such as Float, assume that they are expressed using SI units. When the data consists of FloatTorque objects, they each 190 * have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as 191 * SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is 192 * DENSE since we offer the data as a List. 193 * @param data List<Float> or List<Torque>; the data for the vector 194 */ 195 public FloatTorqueVector(final List<? extends Number> data) 196 { 197 this(data, StorageType.DENSE); 198 } 199 200 /* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatTorque> */ 201 202 /** 203 * Construct a FloatTorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to 204 * of FloatTorque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the 205 * size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a 206 * different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatTorque objects. In 207 * case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as 208 * well as the unit in which they will be printed. In case the map contains FloatTorque objects, each FloatTorque has its 209 * own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or 210 * base values, and expressed using the display unit or base unit when printing. 211 * @param data Map<Integer, Float> or Map<Integer, FloatTorque>; the data for the vector 212 * @param size int; the size off the vector, i.e., the highest index 213 * @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is 214 * expressed as List<Float> or List<Number> in general 215 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 216 */ 217 public FloatTorqueVector(final Map<Integer, ? extends Number> data, final int size, final TorqueUnit displayUnit, 218 final StorageType storageType) 219 { 220 this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 221 : data.values().iterator().next() instanceof FloatTorque 222 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 223 : FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType), 224 displayUnit); 225 } 226 227 /** 228 * Construct a FloatTorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to 229 * of FloatTorque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the 230 * size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a 231 * different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatTorque objects. In 232 * case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as 233 * well as the unit in which they will be printed. In case the map contains FloatTorque objects, each FloatTorque has its 234 * own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or 235 * base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we 236 * offer the data as a Map. 237 * @param data Map<Integer, Float> or Map<Integer, FloatTorque>; the data for the vector 238 * @param size int; the size off the vector, i.e., the highest index 239 * @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is 240 * expressed as List<Float> or List<Number> in general 241 */ 242 public FloatTorqueVector(final Map<Integer, ? extends Number> data, final int size, final TorqueUnit displayUnit) 243 { 244 this(data, size, displayUnit, StorageType.SPARSE); 245 } 246 247 /** 248 * Construct a FloatTorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to 249 * of FloatTorque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the 250 * size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as 251 * Float, assume that they are expressed using SI units. When the data consists of FloatTorque objects, they each have their 252 * own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values 253 * or base values, and expressed using the display unit or base unit when printing. 254 * @param data Map<Integer, Float> or Map<Integer, FloatTorque>; the data for the vector 255 * @param size int; the size off the vector, i.e., the highest index 256 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 257 */ 258 public FloatTorqueVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType) 259 { 260 this(data, size, TorqueUnit.SI, storageType); 261 } 262 263 /** 264 * Construct a FloatTorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to 265 * of FloatTorque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the 266 * size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as 267 * Float, assume that they are expressed using SI units. When the data consists of FloatTorque objects, they each have their 268 * own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values 269 * or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since 270 * we offer the data as a Map. 271 * @param data Map<Integer, Float> or Map<Integer, FloatTorque>; the data for the vector 272 * @param size int; the size off the vector, i.e., the highest index 273 */ 274 public FloatTorqueVector(final Map<Integer, ? extends Number> data, final int size) 275 { 276 this(data, size, StorageType.SPARSE); 277 } 278 279 /* ****************************** Other methods ****************************** */ 280 281 @Override 282 public Class<FloatTorque> getScalarClass() 283 { 284 return FloatTorque.class; 285 } 286 287 @Override 288 public FloatTorqueVector instantiateVector(final FloatVectorData fvd, final TorqueUnit displayUnit) 289 { 290 return new FloatTorqueVector(fvd, displayUnit); 291 } 292 293 @Override 294 public FloatTorque instantiateScalarSI(final float valueSI, final TorqueUnit displayUnit) 295 { 296 FloatTorque result = FloatTorque.instantiateSI(valueSI); 297 result.setDisplayUnit(displayUnit); 298 return result; 299 } 300 301 }