1 package org.djunits.value.vfloat.vector; 2 3 import java.util.List; 4 import java.util.Map; 5 6 import org.djunits.unit.IlluminanceUnit; 7 import org.djunits.unit.scale.IdentityScale; 8 import org.djunits.value.storage.StorageType; 9 import org.djunits.value.vfloat.scalar.FloatIlluminance; 10 import org.djunits.value.vfloat.vector.base.FloatVectorRel; 11 import org.djunits.value.vfloat.vector.data.FloatVectorData; 12 13 import jakarta.annotation.Generated; 14 15 /** 16 * Immutable Float FloatIlluminanceVector, a vector of values with a IlluminanceUnit. 17 * <p> 18 * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br> 19 * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>. 20 * </p> 21 * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a> 22 * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a> 23 */ 24 @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z") 25 public class FloatIlluminanceVector extends FloatVectorRel<IlluminanceUnit, FloatIlluminance, FloatIlluminanceVector> 26 27 { 28 /** */ 29 private static final long serialVersionUID = 20190905L; 30 31 /** 32 * Construct a FloatIlluminanceVector from an internal data object. 33 * @param data FloatVectorData; the internal data object for the vector 34 * @param displayUnit IlluminanceUnit; the display unit of the vector data 35 */ 36 public FloatIlluminanceVector(final FloatVectorData data, final IlluminanceUnit displayUnit) 37 { 38 super(data, displayUnit); 39 } 40 41 /* CONSTRUCTORS WITH float[] */ 42 43 /** 44 * Construct a FloatIlluminanceVector from a float[] object. The Float values are expressed in the displayUnit, and will be 45 * printed using the displayUnit. 46 * @param data float[]; the data for the vector, expressed in the displayUnit 47 * @param displayUnit IlluminanceUnit; the unit of the values in the data array, and display unit when printing 48 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 49 */ 50 public FloatIlluminanceVector(final float[] data, final IlluminanceUnit displayUnit, final StorageType storageType) 51 { 52 this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit); 53 } 54 55 /** 56 * Construct a FloatIlluminanceVector from a float[] object. The Float values are expressed in the displayUnit. Assume that 57 * the StorageType is DENSE since we offer the data as an array. 58 * @param data float[]; the data for the vector 59 * @param displayUnit IlluminanceUnit; the unit of the values in the data array, and display unit when printing 60 */ 61 public FloatIlluminanceVector(final float[] data, final IlluminanceUnit displayUnit) 62 { 63 this(data, displayUnit, StorageType.DENSE); 64 } 65 66 /** 67 * Construct a FloatIlluminanceVector from a float[] object with SI-unit values. 68 * @param data float[]; the data for the vector, in SI units 69 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 70 */ 71 public FloatIlluminanceVector(final float[] data, final StorageType storageType) 72 { 73 this(data, IlluminanceUnit.SI, storageType); 74 } 75 76 /** 77 * Construct a FloatIlluminanceVector from a float[] object with SI-unit values. Assume that the StorageType is DENSE since 78 * we offer the data as an array. 79 * @param data float[]; the data for the vector, in SI units 80 */ 81 public FloatIlluminanceVector(final float[] data) 82 { 83 this(data, StorageType.DENSE); 84 } 85 86 /* CONSTRUCTORS WITH FloatIlluminance[] */ 87 88 /** 89 * Construct a FloatIlluminanceVector from an array of FloatIlluminance objects. The FloatIlluminance values are each 90 * expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. 91 * @param data FloatIlluminance[]; the data for the vector 92 * @param displayUnit IlluminanceUnit; the display unit of the values when printing 93 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 94 */ 95 public FloatIlluminanceVector(final FloatIlluminance[] data, final IlluminanceUnit displayUnit, 96 final StorageType storageType) 97 { 98 this(FloatVectorData.instantiate(data, storageType), displayUnit); 99 } 100 101 /** 102 * Construct a FloatIlluminanceVector from an array of FloatIlluminance objects. The FloatIlluminance values are each 103 * expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. 104 * Assume that the StorageType is DENSE since we offer the data as an array. 105 * @param data FloatIlluminance[]; the data for the vector 106 * @param displayUnit IlluminanceUnit; the display unit of the values when printing 107 */ 108 public FloatIlluminanceVector(final FloatIlluminance[] data, final IlluminanceUnit displayUnit) 109 { 110 this(data, displayUnit, StorageType.DENSE); 111 } 112 113 /** 114 * Construct a FloatIlluminanceVector from an array of FloatIlluminance objects. The FloatIlluminance values are each 115 * expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. 116 * since we offer the data as an array. 117 * @param data FloatIlluminance[]; the data for the vector 118 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 119 */ 120 public FloatIlluminanceVector(final FloatIlluminance[] data, final StorageType storageType) 121 { 122 this(data, IlluminanceUnit.SI, storageType); 123 } 124 125 /** 126 * Construct a FloatIlluminanceVector from an array of FloatIlluminance objects. The FloatIlluminance values are each 127 * expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. 128 * Assume that the StorageType is DENSE since we offer the data as an array. 129 * @param data FloatIlluminance[]; the data for the vector 130 */ 131 public FloatIlluminanceVector(final FloatIlluminance[] data) 132 { 133 this(data, StorageType.DENSE); 134 } 135 136 /* CONSTRUCTORS WITH List<Float> or List<Illuminance> */ 137 138 /** 139 * Construct a FloatIlluminanceVector from a list of Number objects or a list of FloatIlluminance objects. Note that the 140 * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or 141 * FloatIlluminance objects. In case the list contains Number objects, the displayUnit indicates the unit in which the 142 * values in the list are expressed, as well as the unit in which they will be printed. In case the list contains 143 * FloatIlluminance objects, each FloatIlluminance has its own unit, and the displayUnit is just used for printing. The 144 * values but will always be internally stored as SI values or base values, and expressed using the display unit or base 145 * unit when printing. 146 * @param data List<Float> or List<Illuminance>; the data for the vector 147 * @param displayUnit IlluminanceUnit; the display unit of the vector data, and the unit of the data points when the data is 148 * expressed as List<Float> or List<Number> in general 149 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 150 */ 151 public FloatIlluminanceVector(final List<? extends Number> data, final IlluminanceUnit displayUnit, 152 final StorageType storageType) 153 { 154 this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType) 155 : data.get(0) instanceof FloatIlluminance ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType) 156 : FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), 157 displayUnit); 158 } 159 160 /** 161 * Construct a FloatIlluminanceVector from a list of Number objects or a list of FloatIlluminance objects. Note that the 162 * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or 163 * FloatIlluminance objects. In case the list contains Number objects, the displayUnit indicates the unit in which the 164 * values in the list are expressed, as well as the unit in which they will be printed. In case the list contains 165 * FloatIlluminance objects, each FloatIlluminance has its own unit, and the displayUnit is just used for printing. The 166 * values but will always be internally stored as SI values or base values, and expressed using the display unit or base 167 * unit when printing. Assume the storage type is DENSE since we offer the data as a List. 168 * @param data List<Float> or List<Illuminance>; the data for the vector 169 * @param displayUnit IlluminanceUnit; the display unit of the vector data, and the unit of the data points when the data is 170 * expressed as List<Float> or List<Number> in general 171 */ 172 public FloatIlluminanceVector(final List<? extends Number> data, final IlluminanceUnit displayUnit) 173 { 174 this(data, displayUnit, StorageType.DENSE); 175 } 176 177 /** 178 * Construct a FloatIlluminanceVector from a list of Number objects or a list of FloatIlluminance objects. When data 179 * contains numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatIlluminance 180 * objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be 181 * internally stored as SI values or base values, and expressed using the display unit or base unit when printing. 182 * @param data List<Float> or List<Illuminance>; the data for the vector 183 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 184 */ 185 public FloatIlluminanceVector(final List<? extends Number> data, final StorageType storageType) 186 { 187 this(data, IlluminanceUnit.SI, storageType); 188 } 189 190 /** 191 * Construct a FloatIlluminanceVector from a list of Number objects or a list of FloatIlluminance objects. When data 192 * contains numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatIlluminance 193 * objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be 194 * internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume 195 * the storage type is DENSE since we offer the data as a List. 196 * @param data List<Float> or List<Illuminance>; the data for the vector 197 */ 198 public FloatIlluminanceVector(final List<? extends Number> data) 199 { 200 this(data, StorageType.DENSE); 201 } 202 203 /* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatIlluminance> */ 204 205 /** 206 * Construct a FloatIlluminanceVector from a (sparse) map of index values to Number objects or a (sparse) map of index 207 * values to of FloatIlluminance objects. Using index values is particularly useful for sparse vectors. The size parameter 208 * indicates the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit 209 * has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatIlluminance 210 * objects. In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are 211 * expressed, as well as the unit in which they will be printed. In case the map contains FloatIlluminance objects, each 212 * FloatIlluminance has its own unit, and the displayUnit is just used for printing. The values but will always be 213 * internally stored as SI values or base values, and expressed using the display unit or base unit when printing. 214 * @param data Map<Integer, Float> or Map<Integer, FloatIlluminance>; the data for the vector 215 * @param size int; the size off the vector, i.e., the highest index 216 * @param displayUnit IlluminanceUnit; the display unit of the vector data, and the unit of the data points when the data is 217 * expressed as List<Float> or List<Number> in general 218 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 219 */ 220 public FloatIlluminanceVector(final Map<Integer, ? extends Number> data, final int size, final IlluminanceUnit displayUnit, 221 final StorageType storageType) 222 { 223 this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 224 : data.values().iterator().next() instanceof FloatIlluminance 225 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 226 : FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType), 227 displayUnit); 228 } 229 230 /** 231 * Construct a FloatIlluminanceVector from a (sparse) map of index values to Number objects or a (sparse) map of index 232 * values to of FloatIlluminance objects. Using index values is particularly useful for sparse vectors. The size parameter 233 * indicates the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit 234 * has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatIlluminance 235 * objects. In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are 236 * expressed, as well as the unit in which they will be printed. In case the map contains FloatIlluminance objects, each 237 * FloatIlluminance has its own unit, and the displayUnit is just used for printing. The values but will always be 238 * internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume 239 * the storage type is SPARSE since we offer the data as a Map. 240 * @param data Map<Integer, Float> or Map<Integer, FloatIlluminance>; the data for the vector 241 * @param size int; the size off the vector, i.e., the highest index 242 * @param displayUnit IlluminanceUnit; the display unit of the vector data, and the unit of the data points when the data is 243 * expressed as List<Float> or List<Number> in general 244 */ 245 public FloatIlluminanceVector(final Map<Integer, ? extends Number> data, final int size, final IlluminanceUnit displayUnit) 246 { 247 this(data, size, displayUnit, StorageType.SPARSE); 248 } 249 250 /** 251 * Construct a FloatIlluminanceVector from a (sparse) map of index values to Number objects or a (sparse) map of index 252 * values to of FloatIlluminance objects. Using index values is particularly useful for sparse vectors. The size parameter 253 * indicates the size of the vector, since the largest index does not have to be part of the map. When data contains numbers 254 * such as Float, assume that they are expressed using SI units. When the data consists of FloatIlluminance objects, they 255 * each have their own unit, but will be printed using SI units or base units. The values but will always be internally 256 * stored as SI values or base values, and expressed using the display unit or base unit when printing. 257 * @param data Map<Integer, Float> or Map<Integer, FloatIlluminance>; the data for the vector 258 * @param size int; the size off the vector, i.e., the highest index 259 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 260 */ 261 public FloatIlluminanceVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType) 262 { 263 this(data, size, IlluminanceUnit.SI, storageType); 264 } 265 266 /** 267 * Construct a FloatIlluminanceVector from a (sparse) map of index values to Number objects or a (sparse) map of index 268 * values to of FloatIlluminance objects. Using index values is particularly useful for sparse vectors. The size parameter 269 * indicates the size of the vector, since the largest index does not have to be part of the map. When data contains numbers 270 * such as Float, assume that they are expressed using SI units. When the data consists of FloatIlluminance objects, they 271 * each have their own unit, but will be printed using SI units or base units. The values but will always be internally 272 * stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage 273 * type is SPARSE since we offer the data as a Map. 274 * @param data Map<Integer, Float> or Map<Integer, FloatIlluminance>; the data for the vector 275 * @param size int; the size off the vector, i.e., the highest index 276 */ 277 public FloatIlluminanceVector(final Map<Integer, ? extends Number> data, final int size) 278 { 279 this(data, size, StorageType.SPARSE); 280 } 281 282 /* ****************************** Other methods ****************************** */ 283 284 @Override 285 public Class<FloatIlluminance> getScalarClass() 286 { 287 return FloatIlluminance.class; 288 } 289 290 @Override 291 public FloatIlluminanceVector instantiateVector(final FloatVectorData fvd, final IlluminanceUnit displayUnit) 292 { 293 return new FloatIlluminanceVector(fvd, displayUnit); 294 } 295 296 @Override 297 public FloatIlluminance instantiateScalarSI(final float valueSI, final IlluminanceUnit displayUnit) 298 { 299 FloatIlluminance result = FloatIlluminance.instantiateSI(valueSI); 300 result.setDisplayUnit(displayUnit); 301 return result; 302 } 303 304 }