View Javadoc
1   package org.djunits.value.vfloat.vector;
2   
3   import java.util.List;
4   import java.util.Map;
5   
6   import org.djunits.unit.FlowVolumeUnit;
7   import org.djunits.unit.scale.IdentityScale;
8   import org.djunits.value.storage.StorageType;
9   import org.djunits.value.vfloat.scalar.FloatFlowVolume;
10  import org.djunits.value.vfloat.vector.base.FloatVectorRel;
11  import org.djunits.value.vfloat.vector.data.FloatVectorData;
12  
13  import jakarta.annotation.Generated;
14  
15  /**
16   * Immutable Float FloatFlowVolumeVector, a vector of values with a FlowVolumeUnit.
17   * <p>
18   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
19   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
20   * </p>
21   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
22   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
23   */
24  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
25  public class FloatFlowVolumeVector extends FloatVectorRel<FlowVolumeUnit, FloatFlowVolume, FloatFlowVolumeVector>
26  
27  {
28      /** */
29      private static final long serialVersionUID = 20190905L;
30  
31      /**
32       * Construct a FloatFlowVolumeVector from an internal data object.
33       * @param data FloatVectorData; the internal data object for the vector
34       * @param displayUnit FlowVolumeUnit; the display unit of the vector data
35       */
36      public FloatFlowVolumeVector(final FloatVectorData data, final FlowVolumeUnit displayUnit)
37      {
38          super(data, displayUnit);
39      }
40  
41      /* CONSTRUCTORS WITH float[] */
42  
43      /**
44       * Construct a FloatFlowVolumeVector from a float[] object. The Float values are expressed in the displayUnit, and will be
45       * printed using the displayUnit.
46       * @param data float[]; the data for the vector, expressed in the displayUnit
47       * @param displayUnit FlowVolumeUnit; the unit of the values in the data array, and display unit when printing
48       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
49       */
50      public FloatFlowVolumeVector(final float[] data, final FlowVolumeUnit displayUnit, final StorageType storageType)
51      {
52          this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
53      }
54  
55      /**
56       * Construct a FloatFlowVolumeVector from a float[] object. The Float values are expressed in the displayUnit. Assume that
57       * the StorageType is DENSE since we offer the data as an array.
58       * @param data float[]; the data for the vector
59       * @param displayUnit FlowVolumeUnit; the unit of the values in the data array, and display unit when printing
60       */
61      public FloatFlowVolumeVector(final float[] data, final FlowVolumeUnit displayUnit)
62      {
63          this(data, displayUnit, StorageType.DENSE);
64      }
65  
66      /**
67       * Construct a FloatFlowVolumeVector from a float[] object with SI-unit values.
68       * @param data float[]; the data for the vector, in SI units
69       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
70       */
71      public FloatFlowVolumeVector(final float[] data, final StorageType storageType)
72      {
73          this(data, FlowVolumeUnit.SI, storageType);
74      }
75  
76      /**
77       * Construct a FloatFlowVolumeVector from a float[] object with SI-unit values. Assume that the StorageType is DENSE since
78       * we offer the data as an array.
79       * @param data float[]; the data for the vector, in SI units
80       */
81      public FloatFlowVolumeVector(final float[] data)
82      {
83          this(data, StorageType.DENSE);
84      }
85  
86      /* CONSTRUCTORS WITH FloatFlowVolume[] */
87  
88      /**
89       * Construct a FloatFlowVolumeVector from an array of FloatFlowVolume objects. The FloatFlowVolume values are each expressed
90       * in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
91       * @param data FloatFlowVolume[]; the data for the vector
92       * @param displayUnit FlowVolumeUnit; the display unit of the values when printing
93       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
94       */
95      public FloatFlowVolumeVector(final FloatFlowVolume[] data, final FlowVolumeUnit displayUnit, final StorageType storageType)
96      {
97          this(FloatVectorData.instantiate(data, storageType), displayUnit);
98      }
99  
100     /**
101      * Construct a FloatFlowVolumeVector from an array of FloatFlowVolume objects. The FloatFlowVolume values are each expressed
102      * in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume
103      * that the StorageType is DENSE since we offer the data as an array.
104      * @param data FloatFlowVolume[]; the data for the vector
105      * @param displayUnit FlowVolumeUnit; the display unit of the values when printing
106      */
107     public FloatFlowVolumeVector(final FloatFlowVolume[] data, final FlowVolumeUnit displayUnit)
108     {
109         this(data, displayUnit, StorageType.DENSE);
110     }
111 
112     /**
113      * Construct a FloatFlowVolumeVector from an array of FloatFlowVolume objects. The FloatFlowVolume values are each expressed
114      * in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer
115      * the data as an array.
116      * @param data FloatFlowVolume[]; the data for the vector
117      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
118      */
119     public FloatFlowVolumeVector(final FloatFlowVolume[] data, final StorageType storageType)
120     {
121         this(data, FlowVolumeUnit.SI, storageType);
122     }
123 
124     /**
125      * Construct a FloatFlowVolumeVector from an array of FloatFlowVolume objects. The FloatFlowVolume values are each expressed
126      * in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that
127      * the StorageType is DENSE since we offer the data as an array.
128      * @param data FloatFlowVolume[]; the data for the vector
129      */
130     public FloatFlowVolumeVector(final FloatFlowVolume[] data)
131     {
132         this(data, StorageType.DENSE);
133     }
134 
135     /* CONSTRUCTORS WITH List<Float> or List<FlowVolume> */
136 
137     /**
138      * Construct a FloatFlowVolumeVector from a list of Number objects or a list of FloatFlowVolume objects. Note that the
139      * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or
140      * FloatFlowVolume objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values
141      * in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatFlowVolume
142      * objects, each FloatFlowVolume has its own unit, and the displayUnit is just used for printing. The values but will always
143      * be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
144      * @param data List&lt;Float&gt; or List&lt;FlowVolume&gt;; the data for the vector
145      * @param displayUnit FlowVolumeUnit; the display unit of the vector data, and the unit of the data points when the data is
146      *            expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
147      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
148      */
149     public FloatFlowVolumeVector(final List<? extends Number> data, final FlowVolumeUnit displayUnit,
150             final StorageType storageType)
151     {
152         this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType)
153                 : data.get(0) instanceof FloatFlowVolume ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType)
154                         : FloatVectorData.instantiate(data, displayUnit.getScale(), storageType),
155                 displayUnit);
156     }
157 
158     /**
159      * Construct a FloatFlowVolumeVector from a list of Number objects or a list of FloatFlowVolume objects. Note that the
160      * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or
161      * FloatFlowVolume objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values
162      * in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatFlowVolume
163      * objects, each FloatFlowVolume has its own unit, and the displayUnit is just used for printing. The values but will always
164      * be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume
165      * the storage type is DENSE since we offer the data as a List.
166      * @param data List&lt;Float&gt; or List&lt;FlowVolume&gt;; the data for the vector
167      * @param displayUnit FlowVolumeUnit; the display unit of the vector data, and the unit of the data points when the data is
168      *            expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
169      */
170     public FloatFlowVolumeVector(final List<? extends Number> data, final FlowVolumeUnit displayUnit)
171     {
172         this(data, displayUnit, StorageType.DENSE);
173     }
174 
175     /**
176      * Construct a FloatFlowVolumeVector from a list of Number objects or a list of FloatFlowVolume objects. When data contains
177      * numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatFlowVolume objects,
178      * they each have their own unit, but will be printed using SI units or base units. The values but will always be internally
179      * stored as SI values or base values, and expressed using the display unit or base unit when printing.
180      * @param data List&lt;Float&gt; or List&lt;FlowVolume&gt;; the data for the vector
181      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
182      */
183     public FloatFlowVolumeVector(final List<? extends Number> data, final StorageType storageType)
184     {
185         this(data, FlowVolumeUnit.SI, storageType);
186     }
187 
188     /**
189      * Construct a FloatFlowVolumeVector from a list of Number objects or a list of FloatFlowVolume objects. When data contains
190      * numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatFlowVolume objects,
191      * they each have their own unit, but will be printed using SI units or base units. The values but will always be internally
192      * stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage
193      * type is DENSE since we offer the data as a List.
194      * @param data List&lt;Float&gt; or List&lt;FlowVolume&gt;; the data for the vector
195      */
196     public FloatFlowVolumeVector(final List<? extends Number> data)
197     {
198         this(data, StorageType.DENSE);
199     }
200 
201     /* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatFlowVolume> */
202 
203     /**
204      * Construct a FloatFlowVolumeVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
205      * to of FloatFlowVolume objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
206      * the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
207      * different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatFlowVolume objects.
208      * In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed,
209      * as well as the unit in which they will be printed. In case the map contains FloatFlowVolume objects, each FloatFlowVolume
210      * has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI
211      * values or base values, and expressed using the display unit or base unit when printing.
212      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatFlowVolume&gt;; the data for the vector
213      * @param size int; the size off the vector, i.e., the highest index
214      * @param displayUnit FlowVolumeUnit; the display unit of the vector data, and the unit of the data points when the data is
215      *            expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
216      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
217      */
218     public FloatFlowVolumeVector(final Map<Integer, ? extends Number> data, final int size, final FlowVolumeUnit displayUnit,
219             final StorageType storageType)
220     {
221         this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
222                 : data.values().iterator().next() instanceof FloatFlowVolume
223                         ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
224                         : FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
225                 displayUnit);
226     }
227 
228     /**
229      * Construct a FloatFlowVolumeVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
230      * to of FloatFlowVolume objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
231      * the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
232      * different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatFlowVolume objects.
233      * In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed,
234      * as well as the unit in which they will be printed. In case the map contains FloatFlowVolume objects, each FloatFlowVolume
235      * has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI
236      * values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE
237      * since we offer the data as a Map.
238      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatFlowVolume&gt;; the data for the vector
239      * @param size int; the size off the vector, i.e., the highest index
240      * @param displayUnit FlowVolumeUnit; the display unit of the vector data, and the unit of the data points when the data is
241      *            expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
242      */
243     public FloatFlowVolumeVector(final Map<Integer, ? extends Number> data, final int size, final FlowVolumeUnit displayUnit)
244     {
245         this(data, size, displayUnit, StorageType.SPARSE);
246     }
247 
248     /**
249      * Construct a FloatFlowVolumeVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
250      * to of FloatFlowVolume objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
251      * the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
252      * Float, assume that they are expressed using SI units. When the data consists of FloatFlowVolume objects, they each have
253      * their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
254      * values or base values, and expressed using the display unit or base unit when printing.
255      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatFlowVolume&gt;; the data for the vector
256      * @param size int; the size off the vector, i.e., the highest index
257      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
258      */
259     public FloatFlowVolumeVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
260     {
261         this(data, size, FlowVolumeUnit.SI, storageType);
262     }
263 
264     /**
265      * Construct a FloatFlowVolumeVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
266      * to of FloatFlowVolume objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
267      * the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
268      * Float, assume that they are expressed using SI units. When the data consists of FloatFlowVolume objects, they each have
269      * their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
270      * values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE
271      * since we offer the data as a Map.
272      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatFlowVolume&gt;; the data for the vector
273      * @param size int; the size off the vector, i.e., the highest index
274      */
275     public FloatFlowVolumeVector(final Map<Integer, ? extends Number> data, final int size)
276     {
277         this(data, size, StorageType.SPARSE);
278     }
279 
280     /* ****************************** Other methods ****************************** */
281 
282     @Override
283     public Class<FloatFlowVolume> getScalarClass()
284     {
285         return FloatFlowVolume.class;
286     }
287 
288     @Override
289     public FloatFlowVolumeVector instantiateVector(final FloatVectorData fvd, final FlowVolumeUnit displayUnit)
290     {
291         return new FloatFlowVolumeVector(fvd, displayUnit);
292     }
293 
294     @Override
295     public FloatFlowVolume instantiateScalarSI(final float valueSI, final FlowVolumeUnit displayUnit)
296     {
297         FloatFlowVolume result = FloatFlowVolume.instantiateSI(valueSI);
298         result.setDisplayUnit(displayUnit);
299         return result;
300     }
301 
302 }