1 package org.djunits.value.vfloat.vector; 2 3 import java.util.List; 4 import java.util.Map; 5 6 import org.djunits.unit.ElectricalPotentialUnit; 7 import org.djunits.unit.scale.IdentityScale; 8 import org.djunits.value.storage.StorageType; 9 import org.djunits.value.vfloat.scalar.FloatElectricalPotential; 10 import org.djunits.value.vfloat.vector.base.FloatVectorRel; 11 import org.djunits.value.vfloat.vector.data.FloatVectorData; 12 13 import jakarta.annotation.Generated; 14 15 /** 16 * Immutable Float FloatElectricalPotentialVector, a vector of values with a ElectricalPotentialUnit. 17 * <p> 18 * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br> 19 * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>. 20 * </p> 21 * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a> 22 * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a> 23 */ 24 @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z") 25 public class FloatElectricalPotentialVector 26 extends FloatVectorRel<ElectricalPotentialUnit, FloatElectricalPotential, FloatElectricalPotentialVector> 27 28 { 29 /** */ 30 private static final long serialVersionUID = 20190905L; 31 32 /** 33 * Construct a FloatElectricalPotentialVector from an internal data object. 34 * @param data FloatVectorData; the internal data object for the vector 35 * @param displayUnit ElectricalPotentialUnit; the display unit of the vector data 36 */ 37 public FloatElectricalPotentialVector(final FloatVectorData data, final ElectricalPotentialUnit displayUnit) 38 { 39 super(data, displayUnit); 40 } 41 42 /* CONSTRUCTORS WITH float[] */ 43 44 /** 45 * Construct a FloatElectricalPotentialVector from a float[] object. The Float values are expressed in the displayUnit, and 46 * will be printed using the displayUnit. 47 * @param data float[]; the data for the vector, expressed in the displayUnit 48 * @param displayUnit ElectricalPotentialUnit; the unit of the values in the data array, and display unit when printing 49 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 50 */ 51 public FloatElectricalPotentialVector(final float[] data, final ElectricalPotentialUnit displayUnit, 52 final StorageType storageType) 53 { 54 this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit); 55 } 56 57 /** 58 * Construct a FloatElectricalPotentialVector from a float[] object. The Float values are expressed in the displayUnit. 59 * Assume that the StorageType is DENSE since we offer the data as an array. 60 * @param data float[]; the data for the vector 61 * @param displayUnit ElectricalPotentialUnit; the unit of the values in the data array, and display unit when printing 62 */ 63 public FloatElectricalPotentialVector(final float[] data, final ElectricalPotentialUnit displayUnit) 64 { 65 this(data, displayUnit, StorageType.DENSE); 66 } 67 68 /** 69 * Construct a FloatElectricalPotentialVector from a float[] object with SI-unit values. 70 * @param data float[]; the data for the vector, in SI units 71 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 72 */ 73 public FloatElectricalPotentialVector(final float[] data, final StorageType storageType) 74 { 75 this(data, ElectricalPotentialUnit.SI, storageType); 76 } 77 78 /** 79 * Construct a FloatElectricalPotentialVector from a float[] object with SI-unit values. Assume that the StorageType is 80 * DENSE since we offer the data as an array. 81 * @param data float[]; the data for the vector, in SI units 82 */ 83 public FloatElectricalPotentialVector(final float[] data) 84 { 85 this(data, StorageType.DENSE); 86 } 87 88 /* CONSTRUCTORS WITH FloatElectricalPotential[] */ 89 90 /** 91 * Construct a FloatElectricalPotentialVector from an array of FloatElectricalPotential objects. The 92 * FloatElectricalPotential values are each expressed in their own unit, but will be internally stored as SI values, all 93 * expressed in the displayUnit when printing. 94 * @param data FloatElectricalPotential[]; the data for the vector 95 * @param displayUnit ElectricalPotentialUnit; the display unit of the values when printing 96 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 97 */ 98 public FloatElectricalPotentialVector(final FloatElectricalPotential[] data, final ElectricalPotentialUnit displayUnit, 99 final StorageType storageType) 100 { 101 this(FloatVectorData.instantiate(data, storageType), displayUnit); 102 } 103 104 /** 105 * Construct a FloatElectricalPotentialVector from an array of FloatElectricalPotential objects. The 106 * FloatElectricalPotential values are each expressed in their own unit, but will be internally stored as SI values, all 107 * expressed in the displayUnit when printing. Assume that the StorageType is DENSE since we offer the data as an array. 108 * @param data FloatElectricalPotential[]; the data for the vector 109 * @param displayUnit ElectricalPotentialUnit; the display unit of the values when printing 110 */ 111 public FloatElectricalPotentialVector(final FloatElectricalPotential[] data, final ElectricalPotentialUnit displayUnit) 112 { 113 this(data, displayUnit, StorageType.DENSE); 114 } 115 116 /** 117 * Construct a FloatElectricalPotentialVector from an array of FloatElectricalPotential objects. The 118 * FloatElectricalPotential values are each expressed in their own unit, but will be internally stored as SI values, and 119 * expressed using SI units when printing. since we offer the data as an array. 120 * @param data FloatElectricalPotential[]; the data for the vector 121 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 122 */ 123 public FloatElectricalPotentialVector(final FloatElectricalPotential[] data, final StorageType storageType) 124 { 125 this(data, ElectricalPotentialUnit.SI, storageType); 126 } 127 128 /** 129 * Construct a FloatElectricalPotentialVector from an array of FloatElectricalPotential objects. The 130 * FloatElectricalPotential values are each expressed in their own unit, but will be internally stored as SI values, and 131 * expressed using SI units when printing. Assume that the StorageType is DENSE since we offer the data as an array. 132 * @param data FloatElectricalPotential[]; the data for the vector 133 */ 134 public FloatElectricalPotentialVector(final FloatElectricalPotential[] data) 135 { 136 this(data, StorageType.DENSE); 137 } 138 139 /* CONSTRUCTORS WITH List<Float> or List<ElectricalPotential> */ 140 141 /** 142 * Construct a FloatElectricalPotentialVector from a list of Number objects or a list of FloatElectricalPotential objects. 143 * Note that the displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float 144 * objects) or FloatElectricalPotential objects. In case the list contains Number objects, the displayUnit indicates the 145 * unit in which the values in the list are expressed, as well as the unit in which they will be printed. In case the list 146 * contains FloatElectricalPotential objects, each FloatElectricalPotential has its own unit, and the displayUnit is just 147 * used for printing. The values but will always be internally stored as SI values or base values, and expressed using the 148 * display unit or base unit when printing. 149 * @param data List<Float> or List<ElectricalPotential>; the data for the vector 150 * @param displayUnit ElectricalPotentialUnit; the display unit of the vector data, and the unit of the data points when the 151 * data is expressed as List<Float> or List<Number> in general 152 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 153 */ 154 public FloatElectricalPotentialVector(final List<? extends Number> data, final ElectricalPotentialUnit displayUnit, 155 final StorageType storageType) 156 { 157 this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType) 158 : data.get(0) instanceof FloatElectricalPotential 159 ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType) 160 : FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), 161 displayUnit); 162 } 163 164 /** 165 * Construct a FloatElectricalPotentialVector from a list of Number objects or a list of FloatElectricalPotential objects. 166 * Note that the displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float 167 * objects) or FloatElectricalPotential objects. In case the list contains Number objects, the displayUnit indicates the 168 * unit in which the values in the list are expressed, as well as the unit in which they will be printed. In case the list 169 * contains FloatElectricalPotential objects, each FloatElectricalPotential has its own unit, and the displayUnit is just 170 * used for printing. The values but will always be internally stored as SI values or base values, and expressed using the 171 * display unit or base unit when printing. Assume the storage type is DENSE since we offer the data as a List. 172 * @param data List<Float> or List<ElectricalPotential>; the data for the vector 173 * @param displayUnit ElectricalPotentialUnit; the display unit of the vector data, and the unit of the data points when the 174 * data is expressed as List<Float> or List<Number> in general 175 */ 176 public FloatElectricalPotentialVector(final List<? extends Number> data, final ElectricalPotentialUnit displayUnit) 177 { 178 this(data, displayUnit, StorageType.DENSE); 179 } 180 181 /** 182 * Construct a FloatElectricalPotentialVector from a list of Number objects or a list of FloatElectricalPotential objects. 183 * When data contains numbers such as Float, assume that they are expressed using SI units. When the data consists of 184 * FloatElectricalPotential objects, they each have their own unit, but will be printed using SI units or base units. The 185 * values but will always be internally stored as SI values or base values, and expressed using the display unit or base 186 * unit when printing. 187 * @param data List<Float> or List<ElectricalPotential>; the data for the vector 188 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 189 */ 190 public FloatElectricalPotentialVector(final List<? extends Number> data, final StorageType storageType) 191 { 192 this(data, ElectricalPotentialUnit.SI, storageType); 193 } 194 195 /** 196 * Construct a FloatElectricalPotentialVector from a list of Number objects or a list of FloatElectricalPotential objects. 197 * When data contains numbers such as Float, assume that they are expressed using SI units. When the data consists of 198 * FloatElectricalPotential objects, they each have their own unit, but will be printed using SI units or base units. The 199 * values but will always be internally stored as SI values or base values, and expressed using the display unit or base 200 * unit when printing. Assume the storage type is DENSE since we offer the data as a List. 201 * @param data List<Float> or List<ElectricalPotential>; the data for the vector 202 */ 203 public FloatElectricalPotentialVector(final List<? extends Number> data) 204 { 205 this(data, StorageType.DENSE); 206 } 207 208 /* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatElectricalPotential> */ 209 210 /** 211 * Construct a FloatElectricalPotentialVector from a (sparse) map of index values to Number objects or a (sparse) map of 212 * index values to of FloatElectricalPotential objects. Using index values is particularly useful for sparse vectors. The 213 * size parameter indicates the size of the vector, since the largest index does not have to be part of the map. Note that 214 * the displayUnit has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or 215 * FloatElectricalPotential objects. In case the map contains Number objects, the displayUnit indicates the unit in which 216 * the values in the map are expressed, as well as the unit in which they will be printed. In case the map contains 217 * FloatElectricalPotential objects, each FloatElectricalPotential has its own unit, and the displayUnit is just used for 218 * printing. The values but will always be internally stored as SI values or base values, and expressed using the display 219 * unit or base unit when printing. 220 * @param data Map<Integer, Float> or Map<Integer, FloatElectricalPotential>; the data for the vector 221 * @param size int; the size off the vector, i.e., the highest index 222 * @param displayUnit ElectricalPotentialUnit; the display unit of the vector data, and the unit of the data points when the 223 * data is expressed as List<Float> or List<Number> in general 224 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 225 */ 226 public FloatElectricalPotentialVector(final Map<Integer, ? extends Number> data, final int size, 227 final ElectricalPotentialUnit displayUnit, final StorageType storageType) 228 { 229 this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 230 : data.values().iterator().next() instanceof FloatElectricalPotential 231 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 232 : FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType), 233 displayUnit); 234 } 235 236 /** 237 * Construct a FloatElectricalPotentialVector from a (sparse) map of index values to Number objects or a (sparse) map of 238 * index values to of FloatElectricalPotential objects. Using index values is particularly useful for sparse vectors. The 239 * size parameter indicates the size of the vector, since the largest index does not have to be part of the map. Note that 240 * the displayUnit has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or 241 * FloatElectricalPotential objects. In case the map contains Number objects, the displayUnit indicates the unit in which 242 * the values in the map are expressed, as well as the unit in which they will be printed. In case the map contains 243 * FloatElectricalPotential objects, each FloatElectricalPotential has its own unit, and the displayUnit is just used for 244 * printing. The values but will always be internally stored as SI values or base values, and expressed using the display 245 * unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as a Map. 246 * @param data Map<Integer, Float> or Map<Integer, FloatElectricalPotential>; the data for the vector 247 * @param size int; the size off the vector, i.e., the highest index 248 * @param displayUnit ElectricalPotentialUnit; the display unit of the vector data, and the unit of the data points when the 249 * data is expressed as List<Float> or List<Number> in general 250 */ 251 public FloatElectricalPotentialVector(final Map<Integer, ? extends Number> data, final int size, 252 final ElectricalPotentialUnit displayUnit) 253 { 254 this(data, size, displayUnit, StorageType.SPARSE); 255 } 256 257 /** 258 * Construct a FloatElectricalPotentialVector from a (sparse) map of index values to Number objects or a (sparse) map of 259 * index values to of FloatElectricalPotential objects. Using index values is particularly useful for sparse vectors. The 260 * size parameter indicates the size of the vector, since the largest index does not have to be part of the map. When data 261 * contains numbers such as Float, assume that they are expressed using SI units. When the data consists of 262 * FloatElectricalPotential objects, they each have their own unit, but will be printed using SI units or base units. The 263 * values but will always be internally stored as SI values or base values, and expressed using the display unit or base 264 * unit when printing. 265 * @param data Map<Integer, Float> or Map<Integer, FloatElectricalPotential>; the data for the vector 266 * @param size int; the size off the vector, i.e., the highest index 267 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 268 */ 269 public FloatElectricalPotentialVector(final Map<Integer, ? extends Number> data, final int size, 270 final StorageType storageType) 271 { 272 this(data, size, ElectricalPotentialUnit.SI, storageType); 273 } 274 275 /** 276 * Construct a FloatElectricalPotentialVector from a (sparse) map of index values to Number objects or a (sparse) map of 277 * index values to of FloatElectricalPotential objects. Using index values is particularly useful for sparse vectors. The 278 * size parameter indicates the size of the vector, since the largest index does not have to be part of the map. When data 279 * contains numbers such as Float, assume that they are expressed using SI units. When the data consists of 280 * FloatElectricalPotential objects, they each have their own unit, but will be printed using SI units or base units. The 281 * values but will always be internally stored as SI values or base values, and expressed using the display unit or base 282 * unit when printing. Assume the storage type is SPARSE since we offer the data as a Map. 283 * @param data Map<Integer, Float> or Map<Integer, FloatElectricalPotential>; the data for the vector 284 * @param size int; the size off the vector, i.e., the highest index 285 */ 286 public FloatElectricalPotentialVector(final Map<Integer, ? extends Number> data, final int size) 287 { 288 this(data, size, StorageType.SPARSE); 289 } 290 291 /* ****************************** Other methods ****************************** */ 292 293 @Override 294 public Class<FloatElectricalPotential> getScalarClass() 295 { 296 return FloatElectricalPotential.class; 297 } 298 299 @Override 300 public FloatElectricalPotentialVector instantiateVector(final FloatVectorData fvd, 301 final ElectricalPotentialUnit displayUnit) 302 { 303 return new FloatElectricalPotentialVector(fvd, displayUnit); 304 } 305 306 @Override 307 public FloatElectricalPotential instantiateScalarSI(final float valueSI, final ElectricalPotentialUnit displayUnit) 308 { 309 FloatElectricalPotential result = FloatElectricalPotential.instantiateSI(valueSI); 310 result.setDisplayUnit(displayUnit); 311 return result; 312 } 313 314 }