1 package org.djunits.value.vfloat.vector; 2 3 import java.util.List; 4 import java.util.Map; 5 6 import org.djunits.unit.ElectricalCapacitanceUnit; 7 import org.djunits.unit.scale.IdentityScale; 8 import org.djunits.value.storage.StorageType; 9 import org.djunits.value.vfloat.scalar.FloatElectricalCapacitance; 10 import org.djunits.value.vfloat.vector.base.FloatVectorRel; 11 import org.djunits.value.vfloat.vector.data.FloatVectorData; 12 13 import jakarta.annotation.Generated; 14 15 /** 16 * Immutable Float FloatElectricalCapacitanceVector, a vector of values with a ElectricalCapacitanceUnit. 17 * <p> 18 * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br> 19 * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>. 20 * </p> 21 * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a> 22 * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a> 23 */ 24 @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z") 25 public class FloatElectricalCapacitanceVector 26 extends FloatVectorRel<ElectricalCapacitanceUnit, FloatElectricalCapacitance, FloatElectricalCapacitanceVector> 27 28 { 29 /** */ 30 private static final long serialVersionUID = 20190905L; 31 32 /** 33 * Construct a FloatElectricalCapacitanceVector from an internal data object. 34 * @param data FloatVectorData; the internal data object for the vector 35 * @param displayUnit ElectricalCapacitanceUnit; the display unit of the vector data 36 */ 37 public FloatElectricalCapacitanceVector(final FloatVectorData data, final ElectricalCapacitanceUnit displayUnit) 38 { 39 super(data, displayUnit); 40 } 41 42 /* CONSTRUCTORS WITH float[] */ 43 44 /** 45 * Construct a FloatElectricalCapacitanceVector from a float[] object. The Float values are expressed in the displayUnit, 46 * and will be printed using the displayUnit. 47 * @param data float[]; the data for the vector, expressed in the displayUnit 48 * @param displayUnit ElectricalCapacitanceUnit; the unit of the values in the data array, and display unit when printing 49 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 50 */ 51 public FloatElectricalCapacitanceVector(final float[] data, final ElectricalCapacitanceUnit displayUnit, 52 final StorageType storageType) 53 { 54 this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit); 55 } 56 57 /** 58 * Construct a FloatElectricalCapacitanceVector from a float[] object. The Float values are expressed in the displayUnit. 59 * Assume that the StorageType is DENSE since we offer the data as an array. 60 * @param data float[]; the data for the vector 61 * @param displayUnit ElectricalCapacitanceUnit; the unit of the values in the data array, and display unit when printing 62 */ 63 public FloatElectricalCapacitanceVector(final float[] data, final ElectricalCapacitanceUnit displayUnit) 64 { 65 this(data, displayUnit, StorageType.DENSE); 66 } 67 68 /** 69 * Construct a FloatElectricalCapacitanceVector from a float[] object with SI-unit values. 70 * @param data float[]; the data for the vector, in SI units 71 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 72 */ 73 public FloatElectricalCapacitanceVector(final float[] data, final StorageType storageType) 74 { 75 this(data, ElectricalCapacitanceUnit.SI, storageType); 76 } 77 78 /** 79 * Construct a FloatElectricalCapacitanceVector from a float[] object with SI-unit values. Assume that the StorageType is 80 * DENSE since we offer the data as an array. 81 * @param data float[]; the data for the vector, in SI units 82 */ 83 public FloatElectricalCapacitanceVector(final float[] data) 84 { 85 this(data, StorageType.DENSE); 86 } 87 88 /* CONSTRUCTORS WITH FloatElectricalCapacitance[] */ 89 90 /** 91 * Construct a FloatElectricalCapacitanceVector from an array of FloatElectricalCapacitance objects. The 92 * FloatElectricalCapacitance values are each expressed in their own unit, but will be internally stored as SI values, all 93 * expressed in the displayUnit when printing. 94 * @param data FloatElectricalCapacitance[]; the data for the vector 95 * @param displayUnit ElectricalCapacitanceUnit; the display unit of the values when printing 96 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 97 */ 98 public FloatElectricalCapacitanceVector(final FloatElectricalCapacitance[] data, 99 final ElectricalCapacitanceUnit displayUnit, final StorageType storageType) 100 { 101 this(FloatVectorData.instantiate(data, storageType), displayUnit); 102 } 103 104 /** 105 * Construct a FloatElectricalCapacitanceVector from an array of FloatElectricalCapacitance objects. The 106 * FloatElectricalCapacitance values are each expressed in their own unit, but will be internally stored as SI values, all 107 * expressed in the displayUnit when printing. Assume that the StorageType is DENSE since we offer the data as an array. 108 * @param data FloatElectricalCapacitance[]; the data for the vector 109 * @param displayUnit ElectricalCapacitanceUnit; the display unit of the values when printing 110 */ 111 public FloatElectricalCapacitanceVector(final FloatElectricalCapacitance[] data, 112 final ElectricalCapacitanceUnit displayUnit) 113 { 114 this(data, displayUnit, StorageType.DENSE); 115 } 116 117 /** 118 * Construct a FloatElectricalCapacitanceVector from an array of FloatElectricalCapacitance objects. The 119 * FloatElectricalCapacitance values are each expressed in their own unit, but will be internally stored as SI values, and 120 * expressed using SI units when printing. since we offer the data as an array. 121 * @param data FloatElectricalCapacitance[]; the data for the vector 122 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 123 */ 124 public FloatElectricalCapacitanceVector(final FloatElectricalCapacitance[] data, final StorageType storageType) 125 { 126 this(data, ElectricalCapacitanceUnit.SI, storageType); 127 } 128 129 /** 130 * Construct a FloatElectricalCapacitanceVector from an array of FloatElectricalCapacitance objects. The 131 * FloatElectricalCapacitance values are each expressed in their own unit, but will be internally stored as SI values, and 132 * expressed using SI units when printing. Assume that the StorageType is DENSE since we offer the data as an array. 133 * @param data FloatElectricalCapacitance[]; the data for the vector 134 */ 135 public FloatElectricalCapacitanceVector(final FloatElectricalCapacitance[] data) 136 { 137 this(data, StorageType.DENSE); 138 } 139 140 /* CONSTRUCTORS WITH List<Float> or List<ElectricalCapacitance> */ 141 142 /** 143 * Construct a FloatElectricalCapacitanceVector from a list of Number objects or a list of FloatElectricalCapacitance 144 * objects. Note that the displayUnit has a different meaning depending on whether the list contains Number objects (e.g., 145 * Float objects) or FloatElectricalCapacitance objects. In case the list contains Number objects, the displayUnit indicates 146 * the unit in which the values in the list are expressed, as well as the unit in which they will be printed. In case the 147 * list contains FloatElectricalCapacitance objects, each FloatElectricalCapacitance has its own unit, and the displayUnit 148 * is just used for printing. The values but will always be internally stored as SI values or base values, and expressed 149 * using the display unit or base unit when printing. 150 * @param data List<Float> or List<ElectricalCapacitance>; the data for the vector 151 * @param displayUnit ElectricalCapacitanceUnit; the display unit of the vector data, and the unit of the data points when 152 * the data is expressed as List<Float> or List<Number> in general 153 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 154 */ 155 public FloatElectricalCapacitanceVector(final List<? extends Number> data, final ElectricalCapacitanceUnit displayUnit, 156 final StorageType storageType) 157 { 158 this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType) 159 : data.get(0) instanceof FloatElectricalCapacitance 160 ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType) 161 : FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), 162 displayUnit); 163 } 164 165 /** 166 * Construct a FloatElectricalCapacitanceVector from a list of Number objects or a list of FloatElectricalCapacitance 167 * objects. Note that the displayUnit has a different meaning depending on whether the list contains Number objects (e.g., 168 * Float objects) or FloatElectricalCapacitance objects. In case the list contains Number objects, the displayUnit indicates 169 * the unit in which the values in the list are expressed, as well as the unit in which they will be printed. In case the 170 * list contains FloatElectricalCapacitance objects, each FloatElectricalCapacitance has its own unit, and the displayUnit 171 * is just used for printing. The values but will always be internally stored as SI values or base values, and expressed 172 * using the display unit or base unit when printing. Assume the storage type is DENSE since we offer the data as a List. 173 * @param data List<Float> or List<ElectricalCapacitance>; the data for the vector 174 * @param displayUnit ElectricalCapacitanceUnit; the display unit of the vector data, and the unit of the data points when 175 * the data is expressed as List<Float> or List<Number> in general 176 */ 177 public FloatElectricalCapacitanceVector(final List<? extends Number> data, final ElectricalCapacitanceUnit displayUnit) 178 { 179 this(data, displayUnit, StorageType.DENSE); 180 } 181 182 /** 183 * Construct a FloatElectricalCapacitanceVector from a list of Number objects or a list of FloatElectricalCapacitance 184 * objects. When data contains numbers such as Float, assume that they are expressed using SI units. When the data consists 185 * of FloatElectricalCapacitance objects, they each have their own unit, but will be printed using SI units or base units. 186 * The values but will always be internally stored as SI values or base values, and expressed using the display unit or base 187 * unit when printing. 188 * @param data List<Float> or List<ElectricalCapacitance>; the data for the vector 189 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 190 */ 191 public FloatElectricalCapacitanceVector(final List<? extends Number> data, final StorageType storageType) 192 { 193 this(data, ElectricalCapacitanceUnit.SI, storageType); 194 } 195 196 /** 197 * Construct a FloatElectricalCapacitanceVector from a list of Number objects or a list of FloatElectricalCapacitance 198 * objects. When data contains numbers such as Float, assume that they are expressed using SI units. When the data consists 199 * of FloatElectricalCapacitance objects, they each have their own unit, but will be printed using SI units or base units. 200 * The values but will always be internally stored as SI values or base values, and expressed using the display unit or base 201 * unit when printing. Assume the storage type is DENSE since we offer the data as a List. 202 * @param data List<Float> or List<ElectricalCapacitance>; the data for the vector 203 */ 204 public FloatElectricalCapacitanceVector(final List<? extends Number> data) 205 { 206 this(data, StorageType.DENSE); 207 } 208 209 /* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatElectricalCapacitance> */ 210 211 /** 212 * Construct a FloatElectricalCapacitanceVector from a (sparse) map of index values to Number objects or a (sparse) map of 213 * index values to of FloatElectricalCapacitance objects. Using index values is particularly useful for sparse vectors. The 214 * size parameter indicates the size of the vector, since the largest index does not have to be part of the map. Note that 215 * the displayUnit has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or 216 * FloatElectricalCapacitance objects. In case the map contains Number objects, the displayUnit indicates the unit in which 217 * the values in the map are expressed, as well as the unit in which they will be printed. In case the map contains 218 * FloatElectricalCapacitance objects, each FloatElectricalCapacitance has its own unit, and the displayUnit is just used 219 * for printing. The values but will always be internally stored as SI values or base values, and expressed using the 220 * display unit or base unit when printing. 221 * @param data Map<Integer, Float> or Map<Integer, FloatElectricalCapacitance>; the data for the vector 222 * @param size int; the size off the vector, i.e., the highest index 223 * @param displayUnit ElectricalCapacitanceUnit; the display unit of the vector data, and the unit of the data points when 224 * the data is expressed as List<Float> or List<Number> in general 225 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 226 */ 227 public FloatElectricalCapacitanceVector(final Map<Integer, ? extends Number> data, final int size, 228 final ElectricalCapacitanceUnit displayUnit, final StorageType storageType) 229 { 230 this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 231 : data.values().iterator().next() instanceof FloatElectricalCapacitance 232 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType) 233 : FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType), 234 displayUnit); 235 } 236 237 /** 238 * Construct a FloatElectricalCapacitanceVector from a (sparse) map of index values to Number objects or a (sparse) map of 239 * index values to of FloatElectricalCapacitance objects. Using index values is particularly useful for sparse vectors. The 240 * size parameter indicates the size of the vector, since the largest index does not have to be part of the map. Note that 241 * the displayUnit has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or 242 * FloatElectricalCapacitance objects. In case the map contains Number objects, the displayUnit indicates the unit in which 243 * the values in the map are expressed, as well as the unit in which they will be printed. In case the map contains 244 * FloatElectricalCapacitance objects, each FloatElectricalCapacitance has its own unit, and the displayUnit is just used 245 * for printing. The values but will always be internally stored as SI values or base values, and expressed using the 246 * display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as a Map. 247 * @param data Map<Integer, Float> or Map<Integer, FloatElectricalCapacitance>; the data for the vector 248 * @param size int; the size off the vector, i.e., the highest index 249 * @param displayUnit ElectricalCapacitanceUnit; the display unit of the vector data, and the unit of the data points when 250 * the data is expressed as List<Float> or List<Number> in general 251 */ 252 public FloatElectricalCapacitanceVector(final Map<Integer, ? extends Number> data, final int size, 253 final ElectricalCapacitanceUnit displayUnit) 254 { 255 this(data, size, displayUnit, StorageType.SPARSE); 256 } 257 258 /** 259 * Construct a FloatElectricalCapacitanceVector from a (sparse) map of index values to Number objects or a (sparse) map of 260 * index values to of FloatElectricalCapacitance objects. Using index values is particularly useful for sparse vectors. The 261 * size parameter indicates the size of the vector, since the largest index does not have to be part of the map. When data 262 * contains numbers such as Float, assume that they are expressed using SI units. When the data consists of 263 * FloatElectricalCapacitance objects, they each have their own unit, but will be printed using SI units or base units. The 264 * values but will always be internally stored as SI values or base values, and expressed using the display unit or base 265 * unit when printing. 266 * @param data Map<Integer, Float> or Map<Integer, FloatElectricalCapacitance>; the data for the vector 267 * @param size int; the size off the vector, i.e., the highest index 268 * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector 269 */ 270 public FloatElectricalCapacitanceVector(final Map<Integer, ? extends Number> data, final int size, 271 final StorageType storageType) 272 { 273 this(data, size, ElectricalCapacitanceUnit.SI, storageType); 274 } 275 276 /** 277 * Construct a FloatElectricalCapacitanceVector from a (sparse) map of index values to Number objects or a (sparse) map of 278 * index values to of FloatElectricalCapacitance objects. Using index values is particularly useful for sparse vectors. The 279 * size parameter indicates the size of the vector, since the largest index does not have to be part of the map. When data 280 * contains numbers such as Float, assume that they are expressed using SI units. When the data consists of 281 * FloatElectricalCapacitance objects, they each have their own unit, but will be printed using SI units or base units. The 282 * values but will always be internally stored as SI values or base values, and expressed using the display unit or base 283 * unit when printing. Assume the storage type is SPARSE since we offer the data as a Map. 284 * @param data Map<Integer, Float> or Map<Integer, FloatElectricalCapacitance>; the data for the vector 285 * @param size int; the size off the vector, i.e., the highest index 286 */ 287 public FloatElectricalCapacitanceVector(final Map<Integer, ? extends Number> data, final int size) 288 { 289 this(data, size, StorageType.SPARSE); 290 } 291 292 /* ****************************** Other methods ****************************** */ 293 294 @Override 295 public Class<FloatElectricalCapacitance> getScalarClass() 296 { 297 return FloatElectricalCapacitance.class; 298 } 299 300 @Override 301 public FloatElectricalCapacitanceVector instantiateVector(final FloatVectorData fvd, 302 final ElectricalCapacitanceUnit displayUnit) 303 { 304 return new FloatElectricalCapacitanceVector(fvd, displayUnit); 305 } 306 307 @Override 308 public FloatElectricalCapacitance instantiateScalarSI(final float valueSI, final ElectricalCapacitanceUnit displayUnit) 309 { 310 FloatElectricalCapacitance result = FloatElectricalCapacitance.instantiateSI(valueSI); 311 result.setDisplayUnit(displayUnit); 312 return result; 313 } 314 315 }