View Javadoc
1   package org.djunits.value.vfloat.vector;
2   
3   import java.util.List;
4   import java.util.Map;
5   
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.scale.IdentityScale;
8   import org.djunits.value.function.DimensionlessFunctions;
9   import org.djunits.value.storage.StorageType;
10  import org.djunits.value.vfloat.function.FloatMathFunctions;
11  import org.djunits.value.vfloat.scalar.FloatDimensionless;
12  import org.djunits.value.vfloat.vector.base.FloatVectorRel;
13  import org.djunits.value.vfloat.vector.data.FloatVectorData;
14  
15  import jakarta.annotation.Generated;
16  
17  /**
18   * Immutable Float FloatDimensionlessVector, a vector of values with a DimensionlessUnit.
19   * <p>
20   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
21   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
22   * </p>
23   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
24   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
25   */
26  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
27  public class FloatDimensionlessVector extends FloatVectorRel<DimensionlessUnit, FloatDimensionless, FloatDimensionlessVector>
28          implements DimensionlessFunctions<DimensionlessUnit, FloatDimensionlessVector>
29  {
30      /** */
31      private static final long serialVersionUID = 20190905L;
32  
33      /**
34       * Construct a FloatDimensionlessVector from an internal data object.
35       * @param data FloatVectorData; the internal data object for the vector
36       * @param displayUnit DimensionlessUnit; the display unit of the vector data
37       */
38      public FloatDimensionlessVector(final FloatVectorData data, final DimensionlessUnit displayUnit)
39      {
40          super(data, displayUnit);
41      }
42  
43      /* CONSTRUCTORS WITH float[] */
44  
45      /**
46       * Construct a FloatDimensionlessVector from a float[] object. The Float values are expressed in the displayUnit, and will
47       * be printed using the displayUnit.
48       * @param data float[]; the data for the vector, expressed in the displayUnit
49       * @param displayUnit DimensionlessUnit; the unit of the values in the data array, and display unit when printing
50       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
51       */
52      public FloatDimensionlessVector(final float[] data, final DimensionlessUnit displayUnit, final StorageType storageType)
53      {
54          this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
55      }
56  
57      /**
58       * Construct a FloatDimensionlessVector from a float[] object. The Float values are expressed in the displayUnit. Assume
59       * that the StorageType is DENSE since we offer the data as an array.
60       * @param data float[]; the data for the vector
61       * @param displayUnit DimensionlessUnit; the unit of the values in the data array, and display unit when printing
62       */
63      public FloatDimensionlessVector(final float[] data, final DimensionlessUnit displayUnit)
64      {
65          this(data, displayUnit, StorageType.DENSE);
66      }
67  
68      /**
69       * Construct a FloatDimensionlessVector from a float[] object with SI-unit values.
70       * @param data float[]; the data for the vector, in SI units
71       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
72       */
73      public FloatDimensionlessVector(final float[] data, final StorageType storageType)
74      {
75          this(data, DimensionlessUnit.SI, storageType);
76      }
77  
78      /**
79       * Construct a FloatDimensionlessVector from a float[] object with SI-unit values. Assume that the StorageType is DENSE
80       * since we offer the data as an array.
81       * @param data float[]; the data for the vector, in SI units
82       */
83      public FloatDimensionlessVector(final float[] data)
84      {
85          this(data, StorageType.DENSE);
86      }
87  
88      /* CONSTRUCTORS WITH FloatDimensionless[] */
89  
90      /**
91       * Construct a FloatDimensionlessVector from an array of FloatDimensionless objects. The FloatDimensionless values are each
92       * expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
93       * @param data FloatDimensionless[]; the data for the vector
94       * @param displayUnit DimensionlessUnit; the display unit of the values when printing
95       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
96       */
97      public FloatDimensionlessVector(final FloatDimensionless[] data, final DimensionlessUnit displayUnit,
98              final StorageType storageType)
99      {
100         this(FloatVectorData.instantiate(data, storageType), displayUnit);
101     }
102 
103     /**
104      * Construct a FloatDimensionlessVector from an array of FloatDimensionless objects. The FloatDimensionless values are each
105      * expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
106      * Assume that the StorageType is DENSE since we offer the data as an array.
107      * @param data FloatDimensionless[]; the data for the vector
108      * @param displayUnit DimensionlessUnit; the display unit of the values when printing
109      */
110     public FloatDimensionlessVector(final FloatDimensionless[] data, final DimensionlessUnit displayUnit)
111     {
112         this(data, displayUnit, StorageType.DENSE);
113     }
114 
115     /**
116      * Construct a FloatDimensionlessVector from an array of FloatDimensionless objects. The FloatDimensionless values are each
117      * expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing.
118      * since we offer the data as an array.
119      * @param data FloatDimensionless[]; the data for the vector
120      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
121      */
122     public FloatDimensionlessVector(final FloatDimensionless[] data, final StorageType storageType)
123     {
124         this(data, DimensionlessUnit.SI, storageType);
125     }
126 
127     /**
128      * Construct a FloatDimensionlessVector from an array of FloatDimensionless objects. The FloatDimensionless values are each
129      * expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing.
130      * Assume that the StorageType is DENSE since we offer the data as an array.
131      * @param data FloatDimensionless[]; the data for the vector
132      */
133     public FloatDimensionlessVector(final FloatDimensionless[] data)
134     {
135         this(data, StorageType.DENSE);
136     }
137 
138     /* CONSTRUCTORS WITH List<Float> or List<Dimensionless> */
139 
140     /**
141      * Construct a FloatDimensionlessVector from a list of Number objects or a list of FloatDimensionless objects. Note that the
142      * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or
143      * FloatDimensionless objects. In case the list contains Number objects, the displayUnit indicates the unit in which the
144      * values in the list are expressed, as well as the unit in which they will be printed. In case the list contains
145      * FloatDimensionless objects, each FloatDimensionless has its own unit, and the displayUnit is just used for printing. The
146      * values but will always be internally stored as SI values or base values, and expressed using the display unit or base
147      * unit when printing.
148      * @param data List&lt;Float&gt; or List&lt;Dimensionless&gt;; the data for the vector
149      * @param displayUnit DimensionlessUnit; the display unit of the vector data, and the unit of the data points when the data
150      *            is expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
151      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
152      */
153     public FloatDimensionlessVector(final List<? extends Number> data, final DimensionlessUnit displayUnit,
154             final StorageType storageType)
155     {
156         this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType)
157                 : data.get(0) instanceof FloatDimensionless
158                         ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType)
159                         : FloatVectorData.instantiate(data, displayUnit.getScale(), storageType),
160                 displayUnit);
161     }
162 
163     /**
164      * Construct a FloatDimensionlessVector from a list of Number objects or a list of FloatDimensionless objects. Note that the
165      * displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or
166      * FloatDimensionless objects. In case the list contains Number objects, the displayUnit indicates the unit in which the
167      * values in the list are expressed, as well as the unit in which they will be printed. In case the list contains
168      * FloatDimensionless objects, each FloatDimensionless has its own unit, and the displayUnit is just used for printing. The
169      * values but will always be internally stored as SI values or base values, and expressed using the display unit or base
170      * unit when printing. Assume the storage type is DENSE since we offer the data as a List.
171      * @param data List&lt;Float&gt; or List&lt;Dimensionless&gt;; the data for the vector
172      * @param displayUnit DimensionlessUnit; the display unit of the vector data, and the unit of the data points when the data
173      *            is expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
174      */
175     public FloatDimensionlessVector(final List<? extends Number> data, final DimensionlessUnit displayUnit)
176     {
177         this(data, displayUnit, StorageType.DENSE);
178     }
179 
180     /**
181      * Construct a FloatDimensionlessVector from a list of Number objects or a list of FloatDimensionless objects. When data
182      * contains numbers such as Float, assume that they are expressed using SI units. When the data consists of
183      * FloatDimensionless objects, they each have their own unit, but will be printed using SI units or base units. The values
184      * but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when
185      * printing.
186      * @param data List&lt;Float&gt; or List&lt;Dimensionless&gt;; the data for the vector
187      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
188      */
189     public FloatDimensionlessVector(final List<? extends Number> data, final StorageType storageType)
190     {
191         this(data, DimensionlessUnit.SI, storageType);
192     }
193 
194     /**
195      * Construct a FloatDimensionlessVector from a list of Number objects or a list of FloatDimensionless objects. When data
196      * contains numbers such as Float, assume that they are expressed using SI units. When the data consists of
197      * FloatDimensionless objects, they each have their own unit, but will be printed using SI units or base units. The values
198      * but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when
199      * printing. Assume the storage type is DENSE since we offer the data as a List.
200      * @param data List&lt;Float&gt; or List&lt;Dimensionless&gt;; the data for the vector
201      */
202     public FloatDimensionlessVector(final List<? extends Number> data)
203     {
204         this(data, StorageType.DENSE);
205     }
206 
207     /* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatDimensionless> */
208 
209     /**
210      * Construct a FloatDimensionlessVector from a (sparse) map of index values to Number objects or a (sparse) map of index
211      * values to of FloatDimensionless objects. Using index values is particularly useful for sparse vectors. The size parameter
212      * indicates the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit
213      * has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatDimensionless
214      * objects. In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are
215      * expressed, as well as the unit in which they will be printed. In case the map contains FloatDimensionless objects, each
216      * FloatDimensionless has its own unit, and the displayUnit is just used for printing. The values but will always be
217      * internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
218      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatDimensionless&gt;; the data for the vector
219      * @param size int; the size off the vector, i.e., the highest index
220      * @param displayUnit DimensionlessUnit; the display unit of the vector data, and the unit of the data points when the data
221      *            is expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
222      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
223      */
224     public FloatDimensionlessVector(final Map<Integer, ? extends Number> data, final int size,
225             final DimensionlessUnit displayUnit, final StorageType storageType)
226     {
227         this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
228                 : data.values().iterator().next() instanceof FloatDimensionless
229                         ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
230                         : FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
231                 displayUnit);
232     }
233 
234     /**
235      * Construct a FloatDimensionlessVector from a (sparse) map of index values to Number objects or a (sparse) map of index
236      * values to of FloatDimensionless objects. Using index values is particularly useful for sparse vectors. The size parameter
237      * indicates the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit
238      * has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatDimensionless
239      * objects. In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are
240      * expressed, as well as the unit in which they will be printed. In case the map contains FloatDimensionless objects, each
241      * FloatDimensionless has its own unit, and the displayUnit is just used for printing. The values but will always be
242      * internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume
243      * the storage type is SPARSE since we offer the data as a Map.
244      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatDimensionless&gt;; the data for the vector
245      * @param size int; the size off the vector, i.e., the highest index
246      * @param displayUnit DimensionlessUnit; the display unit of the vector data, and the unit of the data points when the data
247      *            is expressed as List&lt;Float&gt; or List&lt;Number&gt; in general
248      */
249     public FloatDimensionlessVector(final Map<Integer, ? extends Number> data, final int size,
250             final DimensionlessUnit displayUnit)
251     {
252         this(data, size, displayUnit, StorageType.SPARSE);
253     }
254 
255     /**
256      * Construct a FloatDimensionlessVector from a (sparse) map of index values to Number objects or a (sparse) map of index
257      * values to of FloatDimensionless objects. Using index values is particularly useful for sparse vectors. The size parameter
258      * indicates the size of the vector, since the largest index does not have to be part of the map. When data contains numbers
259      * such as Float, assume that they are expressed using SI units. When the data consists of FloatDimensionless objects, they
260      * each have their own unit, but will be printed using SI units or base units. The values but will always be internally
261      * stored as SI values or base values, and expressed using the display unit or base unit when printing.
262      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatDimensionless&gt;; the data for the vector
263      * @param size int; the size off the vector, i.e., the highest index
264      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
265      */
266     public FloatDimensionlessVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
267     {
268         this(data, size, DimensionlessUnit.SI, storageType);
269     }
270 
271     /**
272      * Construct a FloatDimensionlessVector from a (sparse) map of index values to Number objects or a (sparse) map of index
273      * values to of FloatDimensionless objects. Using index values is particularly useful for sparse vectors. The size parameter
274      * indicates the size of the vector, since the largest index does not have to be part of the map. When data contains numbers
275      * such as Float, assume that they are expressed using SI units. When the data consists of FloatDimensionless objects, they
276      * each have their own unit, but will be printed using SI units or base units. The values but will always be internally
277      * stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage
278      * type is SPARSE since we offer the data as a Map.
279      * @param data Map&lt;Integer, Float&gt; or Map&lt;Integer, FloatDimensionless&gt;; the data for the vector
280      * @param size int; the size off the vector, i.e., the highest index
281      */
282     public FloatDimensionlessVector(final Map<Integer, ? extends Number> data, final int size)
283     {
284         this(data, size, StorageType.SPARSE);
285     }
286 
287     /* ****************************** Other methods ****************************** */
288 
289     @Override
290     public Class<FloatDimensionless> getScalarClass()
291     {
292         return FloatDimensionless.class;
293     }
294 
295     @Override
296     public FloatDimensionlessVector instantiateVector(final FloatVectorData fvd, final DimensionlessUnit displayUnit)
297     {
298         return new FloatDimensionlessVector(fvd, displayUnit);
299     }
300 
301     @Override
302     public FloatDimensionless instantiateScalarSI(final float valueSI, final DimensionlessUnit displayUnit)
303     {
304         FloatDimensionless result = FloatDimensionless.instantiateSI(valueSI);
305         result.setDisplayUnit(displayUnit);
306         return result;
307     }
308 
309     @Override
310     public final FloatDimensionlessVector acos()
311     {
312         assign(FloatMathFunctions.ACOS);
313         return this;
314     }
315 
316     @Override
317     public final FloatDimensionlessVector asin()
318     {
319         assign(FloatMathFunctions.ASIN);
320         return this;
321     }
322 
323     @Override
324     public final FloatDimensionlessVector atan()
325     {
326         assign(FloatMathFunctions.ATAN);
327         return this;
328     }
329 
330     @Override
331     public final FloatDimensionlessVector cbrt()
332     {
333         assign(FloatMathFunctions.CBRT);
334         return this;
335     }
336 
337     @Override
338     public final FloatDimensionlessVector cos()
339     {
340         assign(FloatMathFunctions.COS);
341         return this;
342     }
343 
344     @Override
345     public final FloatDimensionlessVector cosh()
346     {
347         assign(FloatMathFunctions.COSH);
348         return this;
349     }
350 
351     @Override
352     public final FloatDimensionlessVector exp()
353     {
354         assign(FloatMathFunctions.EXP);
355         return this;
356     }
357 
358     @Override
359     public final FloatDimensionlessVector expm1()
360     {
361         assign(FloatMathFunctions.EXPM1);
362         return this;
363     }
364 
365     @Override
366     public final FloatDimensionlessVector log()
367     {
368         assign(FloatMathFunctions.LOG);
369         return this;
370     }
371 
372     @Override
373     public final FloatDimensionlessVector log10()
374     {
375         assign(FloatMathFunctions.LOG10);
376         return this;
377     }
378 
379     @Override
380     public final FloatDimensionlessVector log1p()
381     {
382         assign(FloatMathFunctions.LOG1P);
383         return this;
384     }
385 
386     @Override
387     public final FloatDimensionlessVector pow(final double x)
388     {
389         assign(FloatMathFunctions.POW((float) x));
390         return this;
391     }
392 
393     @Override
394     public final FloatDimensionlessVector signum()
395     {
396         assign(FloatMathFunctions.SIGNUM);
397         return this;
398     }
399 
400     @Override
401     public final FloatDimensionlessVector sin()
402     {
403         assign(FloatMathFunctions.SIN);
404         return this;
405     }
406 
407     @Override
408     public final FloatDimensionlessVector sinh()
409     {
410         assign(FloatMathFunctions.SINH);
411         return this;
412     }
413 
414     @Override
415     public final FloatDimensionlessVector sqrt()
416     {
417         assign(FloatMathFunctions.SQRT);
418         return this;
419     }
420 
421     @Override
422     public final FloatDimensionlessVector tan()
423     {
424         assign(FloatMathFunctions.TAN);
425         return this;
426     }
427 
428     @Override
429     public final FloatDimensionlessVector tanh()
430     {
431         assign(FloatMathFunctions.TANH);
432         return this;
433     }
434 
435     @Override
436     public final FloatDimensionlessVector inv()
437     {
438         assign(FloatMathFunctions.INV);
439         return this;
440     }
441 
442 }