View Javadoc
1   package org.djunits.value.vdouble.vector;
2   
3   import java.util.List;
4   import java.util.Map;
5   
6   import org.djunits.unit.AbsoluteTemperatureUnit;
7   import org.djunits.unit.TemperatureUnit;
8   import org.djunits.unit.scale.IdentityScale;
9   import org.djunits.value.storage.StorageType;
10  import org.djunits.value.vdouble.scalar.AbsoluteTemperature;
11  import org.djunits.value.vdouble.scalar.Temperature;
12  import org.djunits.value.vdouble.vector.base.DoubleVectorRelWithAbs;
13  import org.djunits.value.vdouble.vector.data.DoubleVectorData;
14  
15  import jakarta.annotation.Generated;
16  
17  /**
18   * Double TemperatureVector, a vector of values with a TemperatureUnit.
19   * <p>
20   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
21   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
22   * </p>
23   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
24   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
25   */
26  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
27  public class TemperatureVector extends DoubleVectorRelWithAbs<AbsoluteTemperatureUnit, AbsoluteTemperature,
28          AbsoluteTemperatureVector, TemperatureUnit, Temperature, TemperatureVector>
29  {
30      /** */
31      private static final long serialVersionUID = 20190905L;
32  
33      /**
34       * Construct an TemperatureVector from an internal data object.
35       * @param data DoubleVectorData; the internal data object for the vector
36       * @param displayUnit TemperatureUnit; the display unit of the vector data
37       */
38      public TemperatureVector(final DoubleVectorData data, final TemperatureUnit displayUnit)
39      {
40          super(data, displayUnit);
41      }
42  
43      /* CONSTRUCTORS WITH double[] */
44  
45      /**
46       * Construct an TemperatureVector from a double[] object. The double values are expressed in the displayUnit, and will be
47       * printed using the displayUnit.
48       * @param data double[]; the data for the vector, expressed in the displayUnit
49       * @param displayUnit TemperatureUnit; the unit of the values in the data array, and display unit when printing
50       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
51       */
52      public TemperatureVector(final double[] data, final TemperatureUnit displayUnit, final StorageType storageType)
53      {
54          this(DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
55      }
56  
57      /**
58       * Construct an TemperatureVector from a double[] object. The double values are expressed in the displayUnit. Assume that
59       * the StorageType is DENSE since we offer the data as an array.
60       * @param data double[]; the data for the vector
61       * @param displayUnit TemperatureUnit; the unit of the values in the data array, and display unit when printing
62       */
63      public TemperatureVector(final double[] data, final TemperatureUnit displayUnit)
64      {
65          this(data, displayUnit, StorageType.DENSE);
66      }
67  
68      /**
69       * Construct an TemperatureVector from a double[] object with SI-unit values.
70       * @param data double[]; the data for the vector, in SI units
71       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
72       */
73      public TemperatureVector(final double[] data, final StorageType storageType)
74      {
75          this(data, TemperatureUnit.SI, storageType);
76      }
77  
78      /**
79       * Construct an TemperatureVector from a double[] object with SI-unit values. Assume that the StorageType is DENSE since we
80       * offer the data as an array.
81       * @param data double[]; the data for the vector, in SI units
82       */
83      public TemperatureVector(final double[] data)
84      {
85          this(data, StorageType.DENSE);
86      }
87  
88      /* CONSTRUCTORS WITH Temperature[] */
89  
90      /**
91       * Construct an TemperatureVector from an array of Temperature objects. The Temperature values are each expressed in their
92       * own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
93       * @param data Temperature[]; the data for the vector
94       * @param displayUnit TemperatureUnit; the display unit of the values when printing
95       * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
96       */
97      public TemperatureVector(final Temperature[] data, final TemperatureUnit displayUnit, final StorageType storageType)
98      {
99          this(DoubleVectorData.instantiate(data, storageType), displayUnit);
100     }
101 
102     /**
103      * Construct an TemperatureVector from an array of Temperature objects. The Temperature values are each expressed in their
104      * own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that the
105      * StorageType is DENSE since we offer the data as an array.
106      * @param data Temperature[]; the data for the vector
107      * @param displayUnit TemperatureUnit; the display unit of the values when printing
108      */
109     public TemperatureVector(final Temperature[] data, final TemperatureUnit displayUnit)
110     {
111         this(data, displayUnit, StorageType.DENSE);
112     }
113 
114     /**
115      * Construct an TemperatureVector from an array of Temperature objects. The Temperature values are each expressed in their
116      * own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer the data
117      * as an array.
118      * @param data Temperature[]; the data for the vector
119      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
120      */
121     public TemperatureVector(final Temperature[] data, final StorageType storageType)
122     {
123         this(data, TemperatureUnit.SI, storageType);
124     }
125 
126     /**
127      * Construct an TemperatureVector from an array of Temperature objects. The Temperature values are each expressed in their
128      * own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that the
129      * StorageType is DENSE since we offer the data as an array.
130      * @param data Temperature[]; the data for the vector
131      */
132     public TemperatureVector(final Temperature[] data)
133     {
134         this(data, StorageType.DENSE);
135     }
136 
137     /* CONSTRUCTORS WITH List<Double> or List<Temperature> */
138 
139     /**
140      * Construct an TemperatureVector from a list of Number objects or a list of Temperature objects. Note that the displayUnit
141      * has a different meaning depending on whether the list contains Number objects (e.g., Double objects) or Temperature
142      * objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are
143      * expressed, as well as the unit in which they will be printed. In case the list contains Temperature objects, each
144      * Temperature has its own unit, and the displayUnit is just used for printing. The values but will always be internally
145      * stored as SI values or base values, and expressed using the display unit or base unit when printing.
146      * @param data List&lt;Double&gt; or List&lt;Temperature&gt;; the data for the vector
147      * @param displayUnit TemperatureUnit; the display unit of the vector data, and the unit of the data points when the data is
148      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
149      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
150      */
151     public TemperatureVector(final List<? extends Number> data, final TemperatureUnit displayUnit,
152             final StorageType storageType)
153     {
154         this(data.size() == 0 ? DoubleVectorData.instantiate(new double[] {}, IdentityScale.SCALE, storageType)
155                 : data.get(0) instanceof Temperature ? DoubleVectorData.instantiate(data, IdentityScale.SCALE, storageType)
156                         : DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType),
157                 displayUnit);
158     }
159 
160     /**
161      * Construct an TemperatureVector from a list of Number objects or a list of Temperature objects. Note that the displayUnit
162      * has a different meaning depending on whether the list contains Number objects (e.g., Double objects) or Temperature
163      * objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are
164      * expressed, as well as the unit in which they will be printed. In case the list contains Temperature objects, each
165      * Temperature has its own unit, and the displayUnit is just used for printing. The values but will always be internally
166      * stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage
167      * type is DENSE since we offer the data as a List.
168      * @param data List&lt;Double&gt; or List&lt;Temperature&gt;; the data for the vector
169      * @param displayUnit TemperatureUnit; the display unit of the vector data, and the unit of the data points when the data is
170      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
171      */
172     public TemperatureVector(final List<? extends Number> data, final TemperatureUnit displayUnit)
173     {
174         this(data, displayUnit, StorageType.DENSE);
175     }
176 
177     /**
178      * Construct an TemperatureVector from a list of Number objects or a list of Temperature objects. When data contains numbers
179      * such as Double, assume that they are expressed using SI units. When the data consists of Temperature objects, they each
180      * have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as
181      * SI values or base values, and expressed using the display unit or base unit when printing.
182      * @param data List&lt;Double&gt; or List&lt;Temperature&gt;; the data for the vector
183      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
184      */
185     public TemperatureVector(final List<? extends Number> data, final StorageType storageType)
186     {
187         this(data, TemperatureUnit.SI, storageType);
188     }
189 
190     /**
191      * Construct an TemperatureVector from a list of Number objects or a list of Temperature objects. When data contains numbers
192      * such as Double, assume that they are expressed using SI units. When the data consists of Temperature objects, they each
193      * have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as
194      * SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is
195      * DENSE since we offer the data as a List.
196      * @param data List&lt;Double&gt; or List&lt;Temperature&gt;; the data for the vector
197      */
198     public TemperatureVector(final List<? extends Number> data)
199     {
200         this(data, StorageType.DENSE);
201     }
202 
203     /* CONSTRUCTORS WITH Map<Integer, Double> or Map<Integer, Temperature> */
204 
205     /**
206      * Construct an TemperatureVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to
207      * of Temperature objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the
208      * size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
209      * different meaning depending on whether the map contains Number objects (e.g., Double objects) or Temperature objects. In
210      * case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as
211      * well as the unit in which they will be printed. In case the map contains Temperature objects, each Temperature has its
212      * own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or
213      * base values, and expressed using the display unit or base unit when printing.
214      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Temperature&gt;; the data for the vector
215      * @param size int; the size off the vector, i.e., the highest index
216      * @param displayUnit TemperatureUnit; the display unit of the vector data, and the unit of the data points when the data is
217      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
218      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
219      */
220     public TemperatureVector(final Map<Integer, ? extends Number> data, final int size, final TemperatureUnit displayUnit,
221             final StorageType storageType)
222     {
223         this(data.size() == 0 ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
224                 : data.values().iterator().next() instanceof Temperature
225                         ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
226                         : DoubleVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
227                 displayUnit);
228     }
229 
230     /**
231      * Construct an TemperatureVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to
232      * of Temperature objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the
233      * size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
234      * different meaning depending on whether the map contains Number objects (e.g., Double objects) or Temperature objects. In
235      * case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as
236      * well as the unit in which they will be printed. In case the map contains Temperature objects, each Temperature has its
237      * own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or
238      * base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we
239      * offer the data as a Map.
240      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Temperature&gt;; the data for the vector
241      * @param size int; the size off the vector, i.e., the highest index
242      * @param displayUnit TemperatureUnit; the display unit of the vector data, and the unit of the data points when the data is
243      *            expressed as List&lt;Double&gt; or List&lt;Number&gt; in general
244      */
245     public TemperatureVector(final Map<Integer, ? extends Number> data, final int size, final TemperatureUnit displayUnit)
246     {
247         this(data, size, displayUnit, StorageType.SPARSE);
248     }
249 
250     /**
251      * Construct an TemperatureVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to
252      * of Temperature objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the
253      * size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
254      * Double, assume that they are expressed using SI units. When the data consists of Temperature objects, they each have
255      * their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
256      * values or base values, and expressed using the display unit or base unit when printing.
257      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Temperature&gt;; the data for the vector
258      * @param size int; the size off the vector, i.e., the highest index
259      * @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
260      */
261     public TemperatureVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
262     {
263         this(data, size, TemperatureUnit.SI, storageType);
264     }
265 
266     /**
267      * Construct an TemperatureVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to
268      * of Temperature objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the
269      * size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
270      * Double, assume that they are expressed using SI units. When the data consists of Temperature objects, they each have
271      * their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
272      * values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE
273      * since we offer the data as a Map.
274      * @param data Map&lt;Integer, Double&gt; or Map&lt;Integer, Temperature&gt;; the data for the vector
275      * @param size int; the size off the vector, i.e., the highest index
276      */
277     public TemperatureVector(final Map<Integer, ? extends Number> data, final int size)
278     {
279         this(data, size, StorageType.SPARSE);
280     }
281 
282     /* ****************************** Other methods ****************************** */
283 
284     @Override
285     public Class<Temperature> getScalarClass()
286     {
287         return Temperature.class;
288     }
289 
290     @Override
291     public TemperatureVector instantiateVector(final DoubleVectorData dvd, final TemperatureUnit displayUnit)
292     {
293         return new TemperatureVector(dvd, displayUnit);
294     }
295 
296     @Override
297     public Temperature instantiateScalarSI(final double valueSI, final TemperatureUnit displayUnit)
298     {
299         Temperature result = Temperature.instantiateSI(valueSI);
300         result.setDisplayUnit(displayUnit);
301         return result;
302     }
303 
304     @Override
305     public AbsoluteTemperatureVector instantiateVectorAbs(final DoubleVectorData dvd, final AbsoluteTemperatureUnit displayUnit)
306     {
307         return new AbsoluteTemperatureVector(dvd, displayUnit);
308     }
309 
310     @Override
311     public AbsoluteTemperature instantiateScalarAbsSI(final double valueSI, final AbsoluteTemperatureUnit displayUnit)
312     {
313         AbsoluteTemperature result = AbsoluteTemperature.instantiateSI(valueSI);
314         result.setDisplayUnit(displayUnit);
315         return result;
316     }
317 
318 }