View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DensityUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.DurationUnit;
8   import org.djunits.unit.FlowMassUnit;
9   import org.djunits.unit.ForceUnit;
10  import org.djunits.unit.MassUnit;
11  import org.djunits.unit.MomentumUnit;
12  import org.djunits.unit.VolumeUnit;
13  import org.djunits.unit.si.SIPrefixes;
14  import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRel;
15  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
16  import org.djutils.base.NumberParser;
17  import org.djutils.exceptions.Throw;
18  
19  import jakarta.annotation.Generated;
20  
21  /**
22   * Easy access methods for the Mass DoubleScalar, which is relative by definition.
23   * <p>
24   * Copyright (c) 2013-2023 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
25   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
26   * </p>
27   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
28   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
29   */
30  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-04-30T13:59:27.633664900Z")
31  public class Mass extends AbstractDoubleScalarRel<MassUnit, Mass>
32  {
33      /** */
34      private static final long serialVersionUID = 20150905L;
35  
36      /** Constant with value zero. */
37      public static final Mass ZERO = new Mass(0.0, MassUnit.SI);
38  
39      /** Constant with value one. */
40      public static final Mass ONE = new Mass(1.0, MassUnit.SI);
41  
42      /** Constant with value NaN. */
43      @SuppressWarnings("checkstyle:constantname")
44      public static final Mass NaN = new Mass(Double.NaN, MassUnit.SI);
45  
46      /** Constant with value POSITIVE_INFINITY. */
47      public static final Mass POSITIVE_INFINITY = new Mass(Double.POSITIVE_INFINITY, MassUnit.SI);
48  
49      /** Constant with value NEGATIVE_INFINITY. */
50      public static final Mass NEGATIVE_INFINITY = new Mass(Double.NEGATIVE_INFINITY, MassUnit.SI);
51  
52      /** Constant with value MAX_VALUE. */
53      public static final Mass POS_MAXVALUE = new Mass(Double.MAX_VALUE, MassUnit.SI);
54  
55      /** Constant with value -MAX_VALUE. */
56      public static final Mass NEG_MAXVALUE = new Mass(-Double.MAX_VALUE, MassUnit.SI);
57  
58      /**
59       * Construct Mass scalar.
60       * @param value double; the double value
61       * @param unit MassUnit; unit for the double value
62       */
63      public Mass(final double value, final MassUnit unit)
64      {
65          super(value, unit);
66      }
67  
68      /**
69       * Construct Mass scalar.
70       * @param value Mass; Scalar from which to construct this instance
71       */
72      public Mass(final Mass value)
73      {
74          super(value);
75      }
76  
77      /** {@inheritDoc} */
78      @Override
79      public final Mass instantiateRel(final double value, final MassUnit unit)
80      {
81          return new Mass(value, unit);
82      }
83  
84      /**
85       * Construct Mass scalar.
86       * @param value double; the double value in SI units
87       * @return Mass; the new scalar with the SI value
88       */
89      public static final Mass instantiateSI(final double value)
90      {
91          return new Mass(value, MassUnit.SI);
92      }
93  
94      /**
95       * Interpolate between two values.
96       * @param zero Mass; the low value
97       * @param one Mass; the high value
98       * @param ratio double; the ratio between 0 and 1, inclusive
99       * @return Mass; a Scalar at the ratio between
100      */
101     public static Mass interpolate(final Mass zero, final Mass one, final double ratio)
102     {
103         return new Mass(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio, zero.getDisplayUnit());
104     }
105 
106     /**
107      * Return the maximum value of two relative scalars.
108      * @param r1 Mass; the first scalar
109      * @param r2 Mass; the second scalar
110      * @return Mass; the maximum value of two relative scalars
111      */
112     public static Mass max(final Mass r1, final Mass r2)
113     {
114         return r1.gt(r2) ? r1 : r2;
115     }
116 
117     /**
118      * Return the maximum value of more than two relative scalars.
119      * @param r1 Mass; the first scalar
120      * @param r2 Mass; the second scalar
121      * @param rn Mass...; the other scalars
122      * @return Mass; the maximum value of more than two relative scalars
123      */
124     public static Mass max(final Mass r1, final Mass r2, final Mass... rn)
125     {
126         Mass maxr = r1.gt(r2) ? r1 : r2;
127         for (Mass r : rn)
128         {
129             if (r.gt(maxr))
130             {
131                 maxr = r;
132             }
133         }
134         return maxr;
135     }
136 
137     /**
138      * Return the minimum value of two relative scalars.
139      * @param r1 Mass; the first scalar
140      * @param r2 Mass; the second scalar
141      * @return Mass; the minimum value of two relative scalars
142      */
143     public static Mass min(final Mass r1, final Mass r2)
144     {
145         return r1.lt(r2) ? r1 : r2;
146     }
147 
148     /**
149      * Return the minimum value of more than two relative scalars.
150      * @param r1 Mass; the first scalar
151      * @param r2 Mass; the second scalar
152      * @param rn Mass...; the other scalars
153      * @return Mass; the minimum value of more than two relative scalars
154      */
155     public static Mass min(final Mass r1, final Mass r2, final Mass... rn)
156     {
157         Mass minr = r1.lt(r2) ? r1 : r2;
158         for (Mass r : rn)
159         {
160             if (r.lt(minr))
161             {
162                 minr = r;
163             }
164         }
165         return minr;
166     }
167 
168     /**
169      * Returns a Mass representation of a textual representation of a value with a unit. The String representation that can be
170      * parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are allowed,
171      * but not required, between the value and the unit.
172      * @param text String; the textual representation to parse into a Mass
173      * @return Mass; the Scalar representation of the value in its unit
174      * @throws IllegalArgumentException when the text cannot be parsed
175      * @throws NullPointerException when the text argument is null
176      */
177     public static Mass valueOf(final String text)
178     {
179         Throw.whenNull(text, "Error parsing Mass: text to parse is null");
180         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Mass: empty text to parse");
181         try
182         {
183             NumberParser numberParser = new NumberParser().lenient().trailing();
184             double d = numberParser.parseDouble(text);
185             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
186             MassUnit unit = MassUnit.BASE.getUnitByAbbreviation(unitString);
187             if (unit == null)
188                 throw new IllegalArgumentException("Unit " + unitString + " not found");
189             return new Mass(d, unit);
190         }
191         catch (Exception exception)
192         {
193             throw new IllegalArgumentException(
194                     "Error parsing Mass from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
195                     exception);
196         }
197     }
198 
199     /**
200      * Returns a Mass based on a value and the textual representation of the unit, which can be localized.
201      * @param value double; the value to use
202      * @param unitString String; the textual representation of the unit
203      * @return Mass; the Scalar representation of the value in its unit
204      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
205      * @throws NullPointerException when the unitString argument is null
206      */
207     public static Mass of(final double value, final String unitString)
208     {
209         Throw.whenNull(unitString, "Error parsing Mass: unitString is null");
210         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Mass: empty unitString");
211         MassUnit unit = MassUnit.BASE.getUnitByAbbreviation(unitString);
212         if (unit != null)
213         {
214             return new Mass(value, unit);
215         }
216         throw new IllegalArgumentException("Error parsing Mass with unit " + unitString);
217     }
218 
219     /** {@inheritDoc} */
220     @Override
221     public String toStringSIPrefixed(final int smallestPower, final int biggestPower)
222     {
223         if (!Double.isFinite(this.si))
224         {
225             return toString(getDisplayUnit().getStandardUnit());
226         }
227         // PK: I can't think of an easier way to figure out what the exponent will be; rounding of the mantissa to the available
228         // width makes this hard; This feels like an expensive way.
229         String check = String.format(this.si >= 0 ? "%10.8E" : "%10.7E", this.si);
230         int exponent = Integer.parseInt(check.substring(check.indexOf("E") + 1));
231         if (exponent < -27 || exponent < smallestPower || exponent > 21 + 2 || exponent > biggestPower)
232         {
233             // Out of SI prefix range; do not scale.
234             return String.format(this.si >= 0 ? "%10.4E" : "%10.3E", this.si) + " "
235                     + getDisplayUnit().getStandardUnit().getId();
236         }
237         Integer roundedExponent = (int) Math.ceil((exponent - 2.0) / 3) * 3 + 3;
238         // System.out.print(String.format("exponent=%d; roundedExponent=%d ", exponent, roundedExponent));
239         String key = SIPrefixes.FACTORS.get(roundedExponent).getDefaultTextualPrefix() + "g";
240         MassUnit displayUnit = getDisplayUnit().getQuantity().getUnitByAbbreviation(key);
241         return toString(displayUnit);
242     }
243 
244     /**
245      * Calculate the division of Mass and Mass, which results in a Dimensionless scalar.
246      * @param v Mass; scalar
247      * @return Dimensionless; scalar as a division of Mass and Mass
248      */
249     public final Dimensionless divide(final Mass v)
250     {
251         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
252     }
253 
254     /**
255      * Calculate the division of Mass and FlowMass, which results in a Duration scalar.
256      * @param v Mass; scalar
257      * @return Duration; scalar as a division of Mass and FlowMass
258      */
259     public final Duration divide(final FlowMass v)
260     {
261         return new Duration(this.si / v.si, DurationUnit.SI);
262     }
263 
264     /**
265      * Calculate the division of Mass and Duration, which results in a FlowMass scalar.
266      * @param v Mass; scalar
267      * @return FlowMass; scalar as a division of Mass and Duration
268      */
269     public final FlowMass divide(final Duration v)
270     {
271         return new FlowMass(this.si / v.si, FlowMassUnit.SI);
272     }
273 
274     /**
275      * Calculate the multiplication of Mass and Acceleration, which results in a Force scalar.
276      * @param v Mass; scalar
277      * @return Force; scalar as a multiplication of Mass and Acceleration
278      */
279     public final Force times(final Acceleration v)
280     {
281         return new Force(this.si * v.si, ForceUnit.SI);
282     }
283 
284     /**
285      * Calculate the multiplication of Mass and Frequency, which results in a FlowMass scalar.
286      * @param v Mass; scalar
287      * @return FlowMass; scalar as a multiplication of Mass and Frequency
288      */
289     public final FlowMass times(final Frequency v)
290     {
291         return new FlowMass(this.si * v.si, FlowMassUnit.SI);
292     }
293 
294     /**
295      * Calculate the division of Mass and Density, which results in a Volume scalar.
296      * @param v Mass; scalar
297      * @return Volume; scalar as a division of Mass and Density
298      */
299     public final Volume divide(final Density v)
300     {
301         return new Volume(this.si / v.si, VolumeUnit.SI);
302     }
303 
304     /**
305      * Calculate the division of Mass and Volume, which results in a Density scalar.
306      * @param v Mass; scalar
307      * @return Density; scalar as a division of Mass and Volume
308      */
309     public final Density divide(final Volume v)
310     {
311         return new Density(this.si / v.si, DensityUnit.SI);
312     }
313 
314     /**
315      * Calculate the multiplication of Mass and Speed, which results in a Momentum scalar.
316      * @param v Mass; scalar
317      * @return Momentum; scalar as a multiplication of Mass and Speed
318      */
319     public final Momentum times(final Speed v)
320     {
321         return new Momentum(this.si * v.si, MomentumUnit.SI);
322     }
323 
324     /** {@inheritDoc} */
325     @Override
326     public SIScalar reciprocal()
327     {
328         return DoubleScalar.divide(Dimensionless.ONE, this);
329     }
330 
331 }