View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AreaUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.DurationUnit;
8   import org.djunits.unit.ElectricalCurrentUnit;
9   import org.djunits.unit.ElectricalInductanceUnit;
10  import org.djunits.unit.ElectricalPotentialUnit;
11  import org.djunits.unit.MagneticFluxDensityUnit;
12  import org.djunits.unit.MagneticFluxUnit;
13  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
14  import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
15  import org.djutils.base.NumberParser;
16  import org.djutils.exceptions.Throw;
17  
18  import jakarta.annotation.Generated;
19  
20  /**
21   * Easy access methods for the MagneticFlux DoubleScalar, which is relative by definition.
22   * <p>
23   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
24   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
25   * </p>
26   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
27   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
28   */
29  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
30  public class MagneticFlux extends DoubleScalarRel<MagneticFluxUnit, MagneticFlux>
31  {
32      /** */
33      private static final long serialVersionUID = 20150905L;
34  
35      /** Constant with value zero. */
36      public static final MagneticFlux ZERO = new MagneticFlux(0.0, MagneticFluxUnit.SI);
37  
38      /** Constant with value one. */
39      public static final MagneticFlux ONE = new MagneticFlux(1.0, MagneticFluxUnit.SI);
40  
41      /** Constant with value NaN. */
42      @SuppressWarnings("checkstyle:constantname")
43      public static final MagneticFlux NaN = new MagneticFlux(Double.NaN, MagneticFluxUnit.SI);
44  
45      /** Constant with value POSITIVE_INFINITY. */
46      public static final MagneticFlux POSITIVE_INFINITY = new MagneticFlux(Double.POSITIVE_INFINITY, MagneticFluxUnit.SI);
47  
48      /** Constant with value NEGATIVE_INFINITY. */
49      public static final MagneticFlux NEGATIVE_INFINITY = new MagneticFlux(Double.NEGATIVE_INFINITY, MagneticFluxUnit.SI);
50  
51      /** Constant with value MAX_VALUE. */
52      public static final MagneticFlux POS_MAXVALUE = new MagneticFlux(Double.MAX_VALUE, MagneticFluxUnit.SI);
53  
54      /** Constant with value -MAX_VALUE. */
55      public static final MagneticFlux NEG_MAXVALUE = new MagneticFlux(-Double.MAX_VALUE, MagneticFluxUnit.SI);
56  
57      /**
58       * Construct MagneticFlux scalar.
59       * @param value double; the double value
60       * @param unit MagneticFluxUnit; unit for the double value
61       */
62      public MagneticFlux(final double value, final MagneticFluxUnit unit)
63      {
64          super(value, unit);
65      }
66  
67      /**
68       * Construct MagneticFlux scalar.
69       * @param value MagneticFlux; Scalar from which to construct this instance
70       */
71      public MagneticFlux(final MagneticFlux value)
72      {
73          super(value);
74      }
75  
76      @Override
77      public final MagneticFlux instantiateRel(final double value, final MagneticFluxUnit unit)
78      {
79          return new MagneticFlux(value, unit);
80      }
81  
82      /**
83       * Construct MagneticFlux scalar.
84       * @param value double; the double value in SI units
85       * @return MagneticFlux; the new scalar with the SI value
86       */
87      public static final MagneticFlux instantiateSI(final double value)
88      {
89          return new MagneticFlux(value, MagneticFluxUnit.SI);
90      }
91  
92      /**
93       * Interpolate between two values.
94       * @param zero MagneticFlux; the low value
95       * @param one MagneticFlux; the high value
96       * @param ratio double; the ratio between 0 and 1, inclusive
97       * @return MagneticFlux; a Scalar at the ratio between
98       */
99      public static MagneticFlux interpolate(final MagneticFlux zero, final MagneticFlux one, final double ratio)
100     {
101         return new MagneticFlux(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
102                 zero.getDisplayUnit());
103     }
104 
105     /**
106      * Return the maximum value of two relative scalars.
107      * @param r1 MagneticFlux; the first scalar
108      * @param r2 MagneticFlux; the second scalar
109      * @return MagneticFlux; the maximum value of two relative scalars
110      */
111     public static MagneticFlux max(final MagneticFlux r1, final MagneticFlux r2)
112     {
113         return r1.gt(r2) ? r1 : r2;
114     }
115 
116     /**
117      * Return the maximum value of more than two relative scalars.
118      * @param r1 MagneticFlux; the first scalar
119      * @param r2 MagneticFlux; the second scalar
120      * @param rn MagneticFlux...; the other scalars
121      * @return MagneticFlux; the maximum value of more than two relative scalars
122      */
123     public static MagneticFlux max(final MagneticFlux r1, final MagneticFlux r2, final MagneticFlux... rn)
124     {
125         MagneticFlux maxr = r1.gt(r2) ? r1 : r2;
126         for (MagneticFlux r : rn)
127         {
128             if (r.gt(maxr))
129             {
130                 maxr = r;
131             }
132         }
133         return maxr;
134     }
135 
136     /**
137      * Return the minimum value of two relative scalars.
138      * @param r1 MagneticFlux; the first scalar
139      * @param r2 MagneticFlux; the second scalar
140      * @return MagneticFlux; the minimum value of two relative scalars
141      */
142     public static MagneticFlux min(final MagneticFlux r1, final MagneticFlux r2)
143     {
144         return r1.lt(r2) ? r1 : r2;
145     }
146 
147     /**
148      * Return the minimum value of more than two relative scalars.
149      * @param r1 MagneticFlux; the first scalar
150      * @param r2 MagneticFlux; the second scalar
151      * @param rn MagneticFlux...; the other scalars
152      * @return MagneticFlux; the minimum value of more than two relative scalars
153      */
154     public static MagneticFlux min(final MagneticFlux r1, final MagneticFlux r2, final MagneticFlux... rn)
155     {
156         MagneticFlux minr = r1.lt(r2) ? r1 : r2;
157         for (MagneticFlux r : rn)
158         {
159             if (r.lt(minr))
160             {
161                 minr = r;
162             }
163         }
164         return minr;
165     }
166 
167     /**
168      * Returns a MagneticFlux representation of a textual representation of a value with a unit. The String representation that
169      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
170      * allowed, but not required, between the value and the unit.
171      * @param text String; the textual representation to parse into a MagneticFlux
172      * @return MagneticFlux; the Scalar representation of the value in its unit
173      * @throws IllegalArgumentException when the text cannot be parsed
174      * @throws NullPointerException when the text argument is null
175      */
176     public static MagneticFlux valueOf(final String text)
177     {
178         Throw.whenNull(text, "Error parsing MagneticFlux: text to parse is null");
179         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing MagneticFlux: empty text to parse");
180         try
181         {
182             NumberParser numberParser = new NumberParser().lenient().trailing();
183             double d = numberParser.parseDouble(text);
184             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
185             MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
186             if (unit == null)
187                 throw new IllegalArgumentException("Unit " + unitString + " not found");
188             return new MagneticFlux(d, unit);
189         }
190         catch (Exception exception)
191         {
192             throw new IllegalArgumentException(
193                     "Error parsing MagneticFlux from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
194                     exception);
195         }
196     }
197 
198     /**
199      * Returns a MagneticFlux based on a value and the textual representation of the unit, which can be localized.
200      * @param value double; the value to use
201      * @param unitString String; the textual representation of the unit
202      * @return MagneticFlux; the Scalar representation of the value in its unit
203      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
204      * @throws NullPointerException when the unitString argument is null
205      */
206     public static MagneticFlux of(final double value, final String unitString)
207     {
208         Throw.whenNull(unitString, "Error parsing MagneticFlux: unitString is null");
209         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing MagneticFlux: empty unitString");
210         MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
211         if (unit != null)
212         {
213             return new MagneticFlux(value, unit);
214         }
215         throw new IllegalArgumentException("Error parsing MagneticFlux with unit " + unitString);
216     }
217 
218     /**
219      * Calculate the division of MagneticFlux and MagneticFlux, which results in a Dimensionless scalar.
220      * @param v MagneticFlux; scalar
221      * @return Dimensionless; scalar as a division of MagneticFlux and MagneticFlux
222      */
223     public final Dimensionless divide(final MagneticFlux v)
224     {
225         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
226     }
227 
228     /**
229      * Calculate the division of MagneticFlux and ElectricalPotential, which results in a Duration scalar.
230      * @param v MagneticFlux; scalar
231      * @return Duration; scalar as a division of MagneticFlux and ElectricalPotential
232      */
233     public final Duration divide(final ElectricalPotential v)
234     {
235         return new Duration(this.si / v.si, DurationUnit.SI);
236     }
237 
238     /**
239      * Calculate the division of MagneticFlux and Duration, which results in a ElectricalPotential scalar.
240      * @param v MagneticFlux; scalar
241      * @return ElectricalPotential; scalar as a division of MagneticFlux and Duration
242      */
243     public final ElectricalPotential divide(final Duration v)
244     {
245         return new ElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
246     }
247 
248     /**
249      * Calculate the division of MagneticFlux and Area, which results in a MagneticFluxDensity scalar.
250      * @param v MagneticFlux; scalar
251      * @return MagneticFluxDensity; scalar as a division of MagneticFlux and Area
252      */
253     public final MagneticFluxDensity divide(final Area v)
254     {
255         return new MagneticFluxDensity(this.si / v.si, MagneticFluxDensityUnit.SI);
256     }
257 
258     /**
259      * Calculate the division of MagneticFlux and MagneticFluxDensity, which results in a Area scalar.
260      * @param v MagneticFlux; scalar
261      * @return Area; scalar as a division of MagneticFlux and MagneticFluxDensity
262      */
263     public final Area divide(final MagneticFluxDensity v)
264     {
265         return new Area(this.si / v.si, AreaUnit.SI);
266     }
267 
268     /**
269      * Calculate the division of MagneticFlux and ElectricalCurrent, which results in a ElectricalInductance scalar.
270      * @param v MagneticFlux; scalar
271      * @return ElectricalInductance; scalar as a division of MagneticFlux and ElectricalCurrent
272      */
273     public final ElectricalInductance divide(final ElectricalCurrent v)
274     {
275         return new ElectricalInductance(this.si / v.si, ElectricalInductanceUnit.SI);
276     }
277 
278     /**
279      * Calculate the division of MagneticFlux and ElectricalInductance, which results in a ElectricalCurrent scalar.
280      * @param v MagneticFlux; scalar
281      * @return ElectricalCurrent; scalar as a division of MagneticFlux and ElectricalInductance
282      */
283     public final ElectricalCurrent divide(final ElectricalInductance v)
284     {
285         return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
286     }
287 
288     @Override
289     public SIScalar reciprocal()
290     {
291         return DoubleScalar.divide(Dimensionless.ONE, this);
292     }
293 
294 }