View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.DimensionlessUnit;
6   import org.djunits.unit.ForceUnit;
7   import org.djunits.unit.FrequencyUnit;
8   import org.djunits.unit.LengthUnit;
9   import org.djunits.unit.LinearDensityUnit;
10  import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
11  import org.djutils.base.NumberParser;
12  import org.djutils.exceptions.Throw;
13  
14  import jakarta.annotation.Generated;
15  
16  /**
17   * Easy access methods for the LinearDensity DoubleScalar, which is relative by definition.
18   * <p>
19   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
20   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
21   * </p>
22   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
23   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
24   */
25  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
26  public class LinearDensity extends DoubleScalarRel<LinearDensityUnit, LinearDensity>
27  {
28      /** */
29      private static final long serialVersionUID = 20150905L;
30  
31      /** Constant with value zero. */
32      public static final LinearDensity ZERO = new LinearDensity(0.0, LinearDensityUnit.SI);
33  
34      /** Constant with value one. */
35      public static final LinearDensity ONE = new LinearDensity(1.0, LinearDensityUnit.SI);
36  
37      /** Constant with value NaN. */
38      @SuppressWarnings("checkstyle:constantname")
39      public static final LinearDensity NaN = new LinearDensity(Double.NaN, LinearDensityUnit.SI);
40  
41      /** Constant with value POSITIVE_INFINITY. */
42      public static final LinearDensity POSITIVE_INFINITY = new LinearDensity(Double.POSITIVE_INFINITY, LinearDensityUnit.SI);
43  
44      /** Constant with value NEGATIVE_INFINITY. */
45      public static final LinearDensity NEGATIVE_INFINITY = new LinearDensity(Double.NEGATIVE_INFINITY, LinearDensityUnit.SI);
46  
47      /** Constant with value MAX_VALUE. */
48      public static final LinearDensity POS_MAXVALUE = new LinearDensity(Double.MAX_VALUE, LinearDensityUnit.SI);
49  
50      /** Constant with value -MAX_VALUE. */
51      public static final LinearDensity NEG_MAXVALUE = new LinearDensity(-Double.MAX_VALUE, LinearDensityUnit.SI);
52  
53      /**
54       * Construct LinearDensity scalar.
55       * @param value double; the double value
56       * @param unit LinearDensityUnit; unit for the double value
57       */
58      public LinearDensity(final double value, final LinearDensityUnit unit)
59      {
60          super(value, unit);
61      }
62  
63      /**
64       * Construct LinearDensity scalar.
65       * @param value LinearDensity; Scalar from which to construct this instance
66       */
67      public LinearDensity(final LinearDensity value)
68      {
69          super(value);
70      }
71  
72      @Override
73      public final LinearDensity instantiateRel(final double value, final LinearDensityUnit unit)
74      {
75          return new LinearDensity(value, unit);
76      }
77  
78      /**
79       * Construct LinearDensity scalar.
80       * @param value double; the double value in SI units
81       * @return LinearDensity; the new scalar with the SI value
82       */
83      public static final LinearDensity instantiateSI(final double value)
84      {
85          return new LinearDensity(value, LinearDensityUnit.SI);
86      }
87  
88      /**
89       * Interpolate between two values.
90       * @param zero LinearDensity; the low value
91       * @param one LinearDensity; the high value
92       * @param ratio double; the ratio between 0 and 1, inclusive
93       * @return LinearDensity; a Scalar at the ratio between
94       */
95      public static LinearDensity interpolate(final LinearDensity zero, final LinearDensity one, final double ratio)
96      {
97          return new LinearDensity(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
98                  zero.getDisplayUnit());
99      }
100 
101     /**
102      * Return the maximum value of two relative scalars.
103      * @param r1 LinearDensity; the first scalar
104      * @param r2 LinearDensity; the second scalar
105      * @return LinearDensity; the maximum value of two relative scalars
106      */
107     public static LinearDensity max(final LinearDensity r1, final LinearDensity r2)
108     {
109         return r1.gt(r2) ? r1 : r2;
110     }
111 
112     /**
113      * Return the maximum value of more than two relative scalars.
114      * @param r1 LinearDensity; the first scalar
115      * @param r2 LinearDensity; the second scalar
116      * @param rn LinearDensity...; the other scalars
117      * @return LinearDensity; the maximum value of more than two relative scalars
118      */
119     public static LinearDensity max(final LinearDensity r1, final LinearDensity r2, final LinearDensity... rn)
120     {
121         LinearDensity maxr = r1.gt(r2) ? r1 : r2;
122         for (LinearDensity r : rn)
123         {
124             if (r.gt(maxr))
125             {
126                 maxr = r;
127             }
128         }
129         return maxr;
130     }
131 
132     /**
133      * Return the minimum value of two relative scalars.
134      * @param r1 LinearDensity; the first scalar
135      * @param r2 LinearDensity; the second scalar
136      * @return LinearDensity; the minimum value of two relative scalars
137      */
138     public static LinearDensity min(final LinearDensity r1, final LinearDensity r2)
139     {
140         return r1.lt(r2) ? r1 : r2;
141     }
142 
143     /**
144      * Return the minimum value of more than two relative scalars.
145      * @param r1 LinearDensity; the first scalar
146      * @param r2 LinearDensity; the second scalar
147      * @param rn LinearDensity...; the other scalars
148      * @return LinearDensity; the minimum value of more than two relative scalars
149      */
150     public static LinearDensity min(final LinearDensity r1, final LinearDensity r2, final LinearDensity... rn)
151     {
152         LinearDensity minr = r1.lt(r2) ? r1 : r2;
153         for (LinearDensity r : rn)
154         {
155             if (r.lt(minr))
156             {
157                 minr = r;
158             }
159         }
160         return minr;
161     }
162 
163     /**
164      * Returns a LinearDensity representation of a textual representation of a value with a unit. The String representation that
165      * can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
166      * allowed, but not required, between the value and the unit.
167      * @param text String; the textual representation to parse into a LinearDensity
168      * @return LinearDensity; the Scalar representation of the value in its unit
169      * @throws IllegalArgumentException when the text cannot be parsed
170      * @throws NullPointerException when the text argument is null
171      */
172     public static LinearDensity valueOf(final String text)
173     {
174         Throw.whenNull(text, "Error parsing LinearDensity: text to parse is null");
175         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing LinearDensity: empty text to parse");
176         try
177         {
178             NumberParser numberParser = new NumberParser().lenient().trailing();
179             double d = numberParser.parseDouble(text);
180             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
181             LinearDensityUnit unit = LinearDensityUnit.BASE.getUnitByAbbreviation(unitString);
182             if (unit == null)
183                 throw new IllegalArgumentException("Unit " + unitString + " not found");
184             return new LinearDensity(d, unit);
185         }
186         catch (Exception exception)
187         {
188             throw new IllegalArgumentException(
189                     "Error parsing LinearDensity from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
190                     exception);
191         }
192     }
193 
194     /**
195      * Returns a LinearDensity based on a value and the textual representation of the unit, which can be localized.
196      * @param value double; the value to use
197      * @param unitString String; the textual representation of the unit
198      * @return LinearDensity; the Scalar representation of the value in its unit
199      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
200      * @throws NullPointerException when the unitString argument is null
201      */
202     public static LinearDensity of(final double value, final String unitString)
203     {
204         Throw.whenNull(unitString, "Error parsing LinearDensity: unitString is null");
205         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing LinearDensity: empty unitString");
206         LinearDensityUnit unit = LinearDensityUnit.BASE.getUnitByAbbreviation(unitString);
207         if (unit != null)
208         {
209             return new LinearDensity(value, unit);
210         }
211         throw new IllegalArgumentException("Error parsing LinearDensity with unit " + unitString);
212     }
213 
214     /**
215      * Calculate the division of LinearDensity and LinearDensity, which results in a Dimensionless scalar.
216      * @param v LinearDensity; scalar
217      * @return Dimensionless; scalar as a division of LinearDensity and LinearDensity
218      */
219     public final Dimensionless divide(final LinearDensity v)
220     {
221         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
222     }
223 
224     /**
225      * Calculate the multiplication of LinearDensity and Length, which results in a Dimensionless scalar.
226      * @param v LinearDensity; scalar
227      * @return Dimensionless; scalar as a multiplication of LinearDensity and Length
228      */
229     public final Dimensionless times(final Length v)
230     {
231         return new Dimensionless(this.si * v.si, DimensionlessUnit.SI);
232     }
233 
234     /**
235      * Calculate the multiplication of LinearDensity and Area, which results in a Length scalar.
236      * @param v LinearDensity; scalar
237      * @return Length; scalar as a multiplication of LinearDensity and Area
238      */
239     public final Length times(final Area v)
240     {
241         return new Length(this.si * v.si, LengthUnit.SI);
242     }
243 
244     /**
245      * Calculate the multiplication of LinearDensity and Energy, which results in a Force scalar.
246      * @param v LinearDensity; scalar
247      * @return Force; scalar as a multiplication of LinearDensity and Energy
248      */
249     public final Force times(final Energy v)
250     {
251         return new Force(this.si * v.si, ForceUnit.SI);
252     }
253 
254     /**
255      * Calculate the multiplication of LinearDensity and Speed, which results in a Frequency scalar.
256      * @param v LinearDensity; scalar
257      * @return Frequency; scalar as a multiplication of LinearDensity and Speed
258      */
259     public final Frequency times(final Speed v)
260     {
261         return new Frequency(this.si * v.si, FrequencyUnit.SI);
262     }
263 
264     @Override
265     public Length reciprocal()
266     {
267         return Length.instantiateSI(1.0 / this.si);
268     }
269 
270 }