View Javadoc
1   package org.djunits.value.vdouble.matrix.base;
2   
3   import org.djunits.unit.SIUnit;
4   import org.djunits.unit.Unit;
5   import org.djunits.unit.util.UnitException;
6   import org.djunits.value.Relative;
7   import org.djunits.value.ValueRuntimeException;
8   import org.djunits.value.vdouble.function.DoubleMathFunctions;
9   import org.djunits.value.vdouble.matrix.SIMatrix;
10  import org.djunits.value.vdouble.matrix.data.DoubleMatrixData;
11  import org.djunits.value.vdouble.scalar.base.DoubleScalar;
12  import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
13  import org.djunits.value.vdouble.vector.base.DoubleVector;
14  import org.djunits.value.vdouble.vector.base.DoubleVectorRel;
15  
16  /**
17   * DoubleMatrixRel.java.
18   * <p>
19   * Copyright (c) 2019-2025 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
20   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
21   * </p>
22   * @author <a href="https://www.tudelft.nl/averbraeck" target="_blank">Alexander Verbraeck</a>
23   * @param <U> the unit
24   * @param <S> the scalar type belonging to the matrix type
25   * @param <RV> the relative vector type belonging to the relative matrix type
26   * @param <RM> the relative matrix type with this unit
27   */
28  public abstract class DoubleMatrixRel<U extends Unit<U>, S extends DoubleScalarRel<U, S>, RV extends DoubleVectorRel<U, S, RV>,
29          RM extends DoubleMatrixRel<U, S, RV, RM>> extends DoubleMatrix<U, S, RV, RM> implements Relative<U, RM>
30  {
31      /** */
32      private static final long serialVersionUID = 20190908L;
33  
34      /**
35       * Construct a new Relative Mutable DoubleMatrix.
36       * @param data an internal data object
37       * @param unit the unit
38       */
39      protected DoubleMatrixRel(final DoubleMatrixData data, final U unit)
40      {
41          super(data.copy(), unit);
42      }
43  
44      /**
45       * Compute the sum of all SI values of this matrix.
46       * @return the sum of all SI values of this matrix with the same display unit as this matrix
47       */
48      public final S zSum()
49      {
50          return instantiateScalarSI(this.data.zSum(), getDisplayUnit());
51      }
52  
53      @Override
54      public final RM plus(final RM rel) throws ValueRuntimeException
55      {
56          return instantiateMatrix(this.getData().plus(rel.getData()), getDisplayUnit());
57      }
58  
59      @Override
60      public final RM minus(final RM rel) throws ValueRuntimeException
61      {
62          return instantiateMatrix(this.getData().minus(rel.getData()), getDisplayUnit());
63      }
64  
65      /**
66       * Increment all values of this matrix by the increment. This only works if this matrix is mutable.
67       * @param increment the scalar by which to increment all values
68       * @return this modified matrix
69       * @throws ValueRuntimeException in case this matrix is immutable
70       */
71      @SuppressWarnings("unchecked")
72      public RM incrementBy(final S increment)
73      {
74          checkCopyOnWrite();
75          assign(DoubleMathFunctions.INC(increment.si));
76          return (RM) this;
77      }
78  
79      /**
80       * Increment all values of this matrix by the increment on a value by value basis. This only works if this matrix is
81       * mutable.
82       * @param increment the matrix that contains the values by which to increment the corresponding values
83       * @return this modified matrix
84       * @throws ValueRuntimeException in case this matrix is immutable
85       * @throws ValueRuntimeException when the sizes of the matrices differ, or <code>increment</code> is null
86       */
87      @SuppressWarnings("unchecked")
88      public RM incrementBy(final RM increment)
89      {
90          checkCopyOnWrite();
91          this.data.incrementBy(increment.getData());
92          return (RM) this;
93      }
94  
95      /**
96       * Decrement all values of this matrix by the decrement. This only works if this matrix is mutable.
97       * @param decrement the scalar by which to decrement all values
98       * @return this modified matrix
99       * @throws ValueRuntimeException in case this matrix is immutable
100      */
101     @SuppressWarnings("unchecked")
102     public RM decrementBy(final S decrement)
103     {
104         checkCopyOnWrite();
105         assign(DoubleMathFunctions.DEC(decrement.si));
106         return (RM) this;
107     }
108 
109     /**
110      * Decrement this Relative matrix by another Relative matrix. The operation is done value by value. This is only allowed if
111      * this matrix is mutable.
112      * @param decrement the matrix that contains the values by which to decrement the corresponding values
113      * @return this modified matrix
114      * @throws ValueRuntimeException in case this matrix is immutable
115      * @throws ValueRuntimeException when the sizes of the matrices differ, or <code>decrement</code> is null
116      */
117     @SuppressWarnings("unchecked")
118     public final RM decrementBy(final RM decrement)
119     {
120         checkCopyOnWrite();
121         this.data.decrementBy(decrement.getData());
122         return (RM) this;
123     }
124 
125     /**
126      * Multiply all values of this matrix by the multiplier. This only works if the matrix is mutable.
127      * @param multiplier the factor by which to multiply all values
128      * @return this modified matrix
129      * @throws ValueRuntimeException in case the matrix is immutable
130      */
131     public RM multiplyBy(final double multiplier)
132     {
133         return assign(DoubleMathFunctions.MULT(multiplier));
134     }
135 
136     /**
137      * Divide all values of this matrix by the divisor. This only works if the matrix is mutable.
138      * @param divisor the value by which to divide all values
139      * @return this modified matrix
140      * @throws ValueRuntimeException in case the matrix is immutable
141      */
142     public RM divideBy(final double divisor)
143     {
144         return assign(DoubleMathFunctions.DIV(divisor));
145     }
146 
147     /**
148      * Multiply a Relative value with this Relative value for a matrix or matrix. The multiplication is done value by value and
149      * store the result in a new Relative value. If both operands are dense, the result is a dense matrix or matrix, otherwise
150      * the result is a sparse matrix or matrix.
151      * @param rel the right operand, which can be any matrix type
152      * @return the multiplication of this matrix and the operand
153      * @throws ValueRuntimeException in case this matrix or matrix and the operand have a different size
154      * @throws UnitException on unit error
155      * @param <UT> the unit type of the multiplier
156      * @param <ST> the scalar type of the multiplier
157      * @param <VT> the vector type of the multiplier
158      * @param <MT> the matrix type of the multiplier
159      */
160     public final <UT extends Unit<UT>, ST extends DoubleScalar<UT, ST>, VT extends DoubleVector<UT, ST, VT>,
161             MT extends DoubleMatrix<UT, ST, VT, MT> & Relative<UT, MT>> SIMatrix times(final MT rel)
162                     throws ValueRuntimeException, UnitException
163     {
164         return new SIMatrix(this.getData().times(rel.getData()), SIUnit.of(
165                 getDisplayUnit().getQuantity().getSiDimensions().plus(rel.getDisplayUnit().getQuantity().getSiDimensions())));
166     }
167 
168     @Override
169     public final RM times(final double multiplier)
170     {
171         RM result = clone().mutable();
172         result.assign(DoubleMathFunctions.MULT(multiplier));
173         return result.immutable();
174     }
175 
176     @Override
177     public final RM times(final float multiplier)
178     {
179         return times((double) multiplier);
180     }
181 
182     /**
183      * Divide this Relative matrix by another Relative matrix. The operation is done value by value and store the result is
184      * stored in a new Relative matrix. If both operands are dense, the result is a dense matrix, otherwise the result is a
185      * sparse matrix. TODO discuss dense or sparseness of result.
186      * @param rel the right operand, which can be any matrix type
187      * @return the division of this matrix and the operand
188      * @throws ValueRuntimeException in case this matrix or matrix and the operand have a different size
189      * @throws UnitException on unit error
190      * @param <UT> the unit type of the multiplier
191      * @param <ST> the scalar type of the multiplier
192      * @param <VT> the vector type of the multiplier
193      * @param <MT> the matrix type of the multiplier
194      */
195     public final <UT extends Unit<UT>, ST extends DoubleScalar<UT, ST>, VT extends DoubleVector<UT, ST, VT>,
196             MT extends DoubleMatrix<UT, ST, VT, MT> & Relative<UT, MT>> SIMatrix divide(final MT rel)
197                     throws ValueRuntimeException, UnitException
198     {
199         return new SIMatrix(this.getData().divide(rel.getData()), SIUnit.of(
200                 getDisplayUnit().getQuantity().getSiDimensions().minus(rel.getDisplayUnit().getQuantity().getSiDimensions())));
201     }
202 
203     @Override
204     public final RM divide(final float divisor)
205     {
206         return divide((double) divisor);
207     }
208 
209     @Override
210     public final RM divide(final double divisor)
211     {
212         RM result = clone().mutable();
213         result.assign(DoubleMathFunctions.DIV(divisor));
214         return result.immutable();
215     }
216 
217 }