View Javadoc
1   package org.djunits.value.vdouble.vector;
2   
3   import static org.junit.jupiter.api.Assertions.assertEquals;
4   import static org.junit.jupiter.api.Assertions.assertFalse;
5   import static org.junit.jupiter.api.Assertions.assertNotEquals;
6   import static org.junit.jupiter.api.Assertions.assertTrue;
7   import static org.junit.jupiter.api.Assertions.fail;
8   
9   import org.djunits.unit.AbsoluteTemperatureUnit;
10  import org.djunits.unit.AngleUnit;
11  import org.djunits.unit.AreaUnit;
12  import org.djunits.unit.DirectionUnit;
13  import org.djunits.unit.DurationUnit;
14  import org.djunits.unit.LengthUnit;
15  import org.djunits.unit.PositionUnit;
16  import org.djunits.unit.SpeedUnit;
17  import org.djunits.unit.TemperatureUnit;
18  import org.djunits.unit.TimeUnit;
19  import org.djunits.unit.util.UnitException;
20  import org.djunits.value.ValueRuntimeException;
21  import org.djunits.value.storage.StorageType;
22  import org.djunits.value.vdouble.function.DoubleMathFunctions;
23  import org.djunits.value.vdouble.scalar.AbsoluteTemperature;
24  import org.djunits.value.vdouble.scalar.Area;
25  import org.djunits.value.vdouble.scalar.Direction;
26  import org.djunits.value.vdouble.scalar.Duration;
27  import org.djunits.value.vdouble.scalar.Position;
28  import org.djunits.value.vdouble.scalar.Time;
29  import org.djunits.value.vdouble.vector.data.DoubleVectorData;
30  import org.djutils.test.UnitTest;
31  import org.junit.jupiter.api.Test;
32  
33  /**
34   * Test the incrementBy, etc. methods.
35   * <p>
36   * Copyright (c) 2013-2025 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
37   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
38   * </p>
39   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
40   */
41  public class DoubleVectorMethodTest
42  {
43  
44      /**
45       * Test the standard methods of all vector classes.
46       * @throws UnitException on error
47       * @throws ValueRuntimeException on error
48       */
49      @Test
50      public void testVectorMethods() throws ValueRuntimeException, UnitException
51      {
52          double[] denseTestData = DOUBLEVECTOR.denseArray(105);
53          double[] sparseTestData = DOUBLEVECTOR.sparseArray(105);
54          double[] reverseSparseTestData = new double[sparseTestData.length];
55          // sparseTestData and reverseSparseTestData should not "run out of values" at the same index
56          for (int index = 0; index < sparseTestData.length; index++)
57          {
58              reverseSparseTestData[reverseSparseTestData.length - 1 - index] = sparseTestData[index];
59          }
60          // Ensure that both have a value at some index (i.c. 10)
61          sparseTestData[10] = 123.456;
62          reverseSparseTestData[10] = sparseTestData[10];
63          // Ensure that there are > 50% positions where both have a non-zero value
64          for (int index = 20; index < 90; index++)
65          {
66              sparseTestData[index] = 10000.456 + index;
67              reverseSparseTestData[index] = 20000.567 + index;
68          }
69          for (StorageType storageType : new StorageType[] {StorageType.DENSE, StorageType.SPARSE})
70          {
71              for (AreaUnit au : new AreaUnit[] {AreaUnit.SQUARE_METER, AreaUnit.ACRE})
72              {
73                  double[] testData = storageType.equals(StorageType.DENSE) ? denseTestData : sparseTestData;
74                  AreaVector am = new AreaVector(DoubleVectorData.instantiate(testData, au.getScale(), storageType), au);
75  
76                  // SPARSE AND DENSE
77                  assertEquals(am, am.toSparse());
78                  assertEquals(am, am.toDense());
79                  assertEquals(am, am.toSparse().toDense());
80                  assertEquals(am, am.toDense().toSparse());
81                  assertEquals(am.hashCode(), am.toSparse().hashCode());
82                  assertEquals(am.hashCode(), am.toDense().hashCode());
83                  assertTrue(am.toDense().isDense());
84                  assertFalse(am.toDense().isSparse());
85                  assertTrue(am.toSparse().isSparse());
86                  assertFalse(am.toSparse().isDense());
87  
88                  // EQUALS
89                  assertEquals(am, am);
90                  assertNotEquals(am, new Object());
91                  assertNotEquals(am, null);
92                  assertNotEquals(am, new LengthVector(
93                          DoubleVectorData.instantiate(testData, LengthUnit.METER.getScale(), storageType), LengthUnit.METER));
94                  assertNotEquals(am, am.divide(2.0d));
95  
96                  // MUTABLE
97                  assertFalse(am.isMutable());
98                  AreaVector ammut = am.mutable();
99                  assertTrue(ammut.isMutable());
100                 assertFalse(am.isMutable());
101                 AreaVector ammut2 = ammut.multiplyBy(1.0);
102                 assertEquals(am, ammut2);
103                 assertTrue(ammut.isMutable());
104                 assertFalse(am.isMutable());
105                 assertTrue(ammut2.isMutable());
106                 ammut2 = ammut2.mutable().divideBy(2.0);
107                 assertEquals(am, ammut);
108                 assertNotEquals(am, ammut2);
109                 AreaVector ammut3 = ammut2.mutable().divideBy(0.0);
110                 for (int index = 0; index < ammut3.size(); index++)
111                 {
112                     if (ammut2.getSI(index) == 0)
113                     {
114                         assertTrue(Double.isNaN(ammut3.getSI(index)), "Value should be NaN");
115 
116                     }
117                     else
118                     {
119                         assertTrue(Double.isInfinite(ammut3.getSI(index)), "Value should be Infinite");
120                     }
121                 }
122 
123                 // ZSUM and CARDINALITY
124                 Area zSum = am.zSum();
125                 double sum = 0;
126                 int card = 0;
127                 for (int index = 0; index < testData.length; index++)
128                 {
129                     sum += testData[index];
130                     card += testData[index] == 0.0d ? 0 : 1;
131                 }
132                 assertEquals(sum, zSum.getInUnit(), 0.1, "zSum");
133                 assertEquals(card, am.cardinality(), "cardinality");
134 
135                 // INCREMENTBY(SCALAR) and DECREMENTBY(SCALAR)
136                 AreaVector amold = am.clone();
137                 Area fa = Area.of(10.0d, "m^2");
138                 AreaVector aminc = am.mutable().incrementBy(fa).immutable();
139                 AreaVector amdec = am.mutable().decrementBy(fa).immutable();
140                 AreaVector amid = aminc.mutable().decrementBy(fa);
141                 assertEquals(am, amold, "immutable vector should not change when converted to mutable");
142                 for (int index = 0; index < testData.length; index++)
143                 {
144                     assertEquals(am.getSI(index), amid.getSI(index), 0.1,
145                             "increment and decrement with scalar should result in same vector");
146                     assertEquals(au.getScale().toStandardUnit(testData[index]) + 10.0, aminc.getSI(index), 0.1,
147                             "m + s = (m+s)");
148                     assertEquals(au.getScale().toStandardUnit(testData[index]) - 10.0, amdec.getSI(index), 0.1,
149                             "m - s = (m-s)");
150                 }
151 
152                 // MULTIPLYBY() and DIVIDEBY(), TIMES(), DIVIDE()
153                 AreaVector amt5 = am.mutable().multiplyBy(5.0d).immutable();
154                 AreaVector amd5 = am.mutable().divideBy(5.0d).immutable();
155                 AreaVector amtd = amt5.mutable().divideBy(5.0d);
156                 AreaVector amtimD = am.times(5.0d);
157                 AreaVector amtimF = am.times(5.0f);
158                 AreaVector amdivD = am.divide(5.0d);
159                 AreaVector amdivF = am.divide(5.0f);
160                 for (int index = 0; index < testData.length; index++)
161                 {
162                     assertEquals(am.getSI(index), amtd.getSI(index), 0.1,
163                             "times followed by divide with constant should result in same vector");
164                     assertEquals(au.getScale().toStandardUnit(testData[index]) * 5.0d, amt5.getSI(index), 0.1,
165                             "m * 5.0 = (m*5.0)");
166                     assertEquals(au.getScale().toStandardUnit(testData[index]) / 5.0d, amd5.getSI(index), 0.1,
167                             "m / 5.0 = (m/5.0)");
168                     assertEquals(amt5.getSI(index), amtimD.getSI(index), 0.1d, "amtimD");
169                     assertEquals(amt5.getSI(index), amtimF.getSI(index), 0.1d, "amtimF");
170                     assertEquals(amd5.getSI(index), amdivD.getSI(index), 0.01d, "amdivD");
171                     assertEquals(amd5.getSI(index), amdivF.getSI(index), 0.01d, "amdivD");
172                 }
173 
174                 // GET(), GETINUNIT()
175                 assertEquals(new Area(testData[2], au), am.get(2), "get()");
176                 assertEquals(au.getScale().toStandardUnit(testData[2]), am.getSI(2), 0.1, "getSI()");
177                 assertEquals(testData[2], am.getInUnit(2), 0.1, "getInUnit()");
178                 assertEquals(AreaUnit.SQUARE_YARD.getScale().fromStandardUnit(au.getScale().toStandardUnit(testData[2])),
179                         am.getInUnit(2, AreaUnit.SQUARE_YARD), 0.1, "getInUnit(unit)");
180 
181                 // SET(), SETINUNIT()
182                 Area fasqft = new Area(10.5d, AreaUnit.SQUARE_FOOT);
183                 AreaVector famChange = am.clone().mutable();
184                 famChange.set(2, fasqft);
185                 assertEquals(fasqft.si, famChange.get(2).si, 0.1d, "set()");
186                 famChange = am.clone().mutable();
187                 famChange.setSI(2, 123.4d);
188                 assertEquals(123.4d, famChange.get(2).si, 0.1d, "setSI()");
189                 famChange = am.clone().mutable();
190                 famChange.setInUnit(2, 1.2d);
191                 assertEquals(1.2d, famChange.getInUnit(2), 0.1d, "setInUnit()");
192                 famChange = am.clone().mutable();
193                 famChange.setInUnit(2, 1.5d, AreaUnit.HECTARE);
194                 assertEquals(15000.0d, famChange.get(2).si, 1.0d, "setInUnit(unit)");
195 
196                 // GETVALUES(), GETSCALARS()
197                 double[] valsi = am.getValuesSI();
198                 double[] valunit = am.getValuesInUnit();
199                 double[] valsqft = am.getValuesInUnit(AreaUnit.SQUARE_YARD);
200                 Area[] valscalars = am.getScalars();
201                 for (int index = 0; index < testData.length; index++)
202                 {
203                     assertEquals(au.getScale().toStandardUnit(testData[index]), valsi[index], 0.1, "getValuesSI()");
204                     assertEquals(testData[index], valunit[index], 0.1, "getValuesInUnit()");
205                     assertEquals(
206                             AreaUnit.SQUARE_YARD.getScale().fromStandardUnit(au.getScale().toStandardUnit(testData[index])),
207                             valsqft[index], 0.1, "getValuesInUnit(unit)");
208                     assertEquals(au.getScale().toStandardUnit(testData[index]), valscalars[index].si, 0.1,
209                             "getValuesInUnit(unit)");
210                 }
211 
212                 // ASSIGN FUNCTION ABS, CEIL, FLOOR, NEG, RINT
213                 AreaVector amdiv2 = am.divide(2.0d);
214                 assertEquals(am.getStorageType(), amdiv2.getStorageType());
215                 assertEquals(am.getDisplayUnit(), amdiv2.getDisplayUnit());
216                 AreaVector amAbs = amdiv2.mutable().abs().immutable();
217                 assertEquals(am.getStorageType(), amAbs.getStorageType());
218                 assertEquals(am.getDisplayUnit(), amAbs.getDisplayUnit());
219                 AreaVector amCeil = amdiv2.mutable().ceil().immutable();
220                 assertEquals(am.getStorageType(), amCeil.getStorageType());
221                 assertEquals(am.getDisplayUnit(), amCeil.getDisplayUnit());
222                 AreaVector amFloor = amdiv2.mutable().floor().immutable();
223                 assertEquals(am.getStorageType(), amFloor.getStorageType());
224                 assertEquals(am.getDisplayUnit(), amFloor.getDisplayUnit());
225                 AreaVector amNeg = amdiv2.mutable().neg().immutable();
226                 assertEquals(am.getStorageType(), amNeg.getStorageType());
227                 assertEquals(am.getDisplayUnit(), amNeg.getDisplayUnit());
228                 AreaVector amRint = amdiv2.mutable().rint().immutable();
229                 assertEquals(am.getStorageType(), amRint.getStorageType());
230                 assertEquals(am.getDisplayUnit(), amRint.getDisplayUnit());
231                 for (int index = 0; index < testData.length; index++)
232                 {
233                     // TODO: Should be rounded IN THE UNIT rather than BY SI VALUES
234                     assertEquals(au.getScale().toStandardUnit(testData[index]) / 2.0d, amdiv2.getSI(index), 0.1d, "div2");
235                     assertEquals(Math.abs(au.getScale().toStandardUnit(testData[index]) / 2.0d), amAbs.getSI(index), 0.1d,
236                             "abs");
237                     assertEquals(Math.ceil(au.getScale().toStandardUnit(testData[index]) / 2.0d), amCeil.getSI(index), 0.1d,
238                             "ceil");
239                     assertEquals(Math.floor(au.getScale().toStandardUnit(testData[index]) / 2.0d), amFloor.getSI(index), 0.1d,
240                             "floor");
241                     assertEquals(-au.getScale().toStandardUnit(testData[index]) / 2.0d, amNeg.getSI(index), 0.1d, "neg");
242                     assertEquals(Math.rint(au.getScale().toStandardUnit(testData[index]) / 2.0d), amRint.getSI(index), 0.1d,
243                             "rint");
244                 }
245 
246                 // TEST METHODS THAT INVOLVE TWO VECTOR INSTANCES
247 
248                 for (StorageType storageType2 : new StorageType[] {StorageType.DENSE, StorageType.SPARSE})
249                 {
250                     double[] testData2 = storageType2.equals(StorageType.DENSE) ? denseTestData : reverseSparseTestData;
251                     for (AreaUnit au2 : new AreaUnit[] {AreaUnit.SQUARE_METER, AreaUnit.ACRE})
252                     {
253                         // PLUS and INCREMENTBY(VECTOR)
254                         AreaVector am2 =
255                                 new AreaVector(DoubleVectorData.instantiate(testData2, au2.getScale(), storageType2), au2);
256                         AreaVector amSum1 = am.plus(am2);
257                         AreaVector amSum2 = am2.plus(am);
258                         AreaVector amSum3 = am.mutable().incrementBy(am2).immutable();
259                         // different order of running out of nonzero values
260                         AreaVector amSum4 = am2.mutable().incrementBy(am).immutable();
261                         assertEquals(amSum1, amSum2, "a+b == b+a");
262                         assertEquals(amSum1, amSum3, "a+b == b+a");
263                         assertEquals(amSum1, amSum4, "a+c == c+a");
264                         for (int index = 0; index < testData.length; index++)
265                         {
266                             double tolerance =
267                                     Double.isFinite(amSum1.getSI(index)) ? Math.abs(amSum1.getSI(index) / 10000.0d) : 0.1d;
268                             assertEquals(
269                                     au.getScale().toStandardUnit(testData[index])
270                                             + au2.getScale().toStandardUnit(testData2[index]),
271                                     amSum1.getSI(index), tolerance, "value in vector matches");
272                         }
273 
274                         // MINUS and DECREMENTBY(VECTOR)
275                         AreaVector amDiff1 = am.minus(am2);
276                         AreaVector amDiff2 = am2.minus(am).mutable().neg();
277                         AreaVector amDiff3 = am.mutable().decrementBy(am2).immutable();
278                         // different order of running out of nonzero values
279                         AreaVector amDiff4 = am2.mutable().decrementBy(am).neg().immutable();
280                         assertEquals(amDiff1, amDiff2, "a-b == -(b-a)");
281                         assertEquals(amDiff1, amDiff3, "a-b == -(b-a)");
282                         assertEquals(amDiff1, amDiff4, "a-c == -(c-a)");
283                         for (int index = 0; index < testData.length; index++)
284                         {
285                             double tolerance =
286                                     Double.isFinite(amDiff1.getSI(index)) ? Math.abs(amDiff1.getSI(index) / 10000.0d) : 0.1d;
287                             assertEquals(
288                                     au.getScale().toStandardUnit(testData[index])
289                                             - au2.getScale().toStandardUnit(testData2[index]),
290                                     amDiff1.getSI(index), tolerance, "value in vector matches");
291                         }
292 
293                         // TIMES(VECTOR) and DIVIDE(VECTOR)
294                         SIVector amTim = am.times(am2);
295                         SIVector amDiv = am.divide(am2);
296                         assertEquals("m4", amTim.getDisplayUnit().getQuantity().getSiDimensions().toString(false, false, false),
297                                 "unit of m2 * m2 should be m4");
298                         assertEquals("", amDiv.getDisplayUnit().getQuantity().getSiDimensions().toString(false, false, false),
299                                 "unit of m2 / m2 should be empty string");
300                         for (int index = 0; index < testData.length; index++)
301                         {
302                             double tolerance =
303                                     Double.isFinite(amTim.getSI(index)) ? Math.abs(amTim.getSI(index) / 10000.0d) : 0.1d;
304                             assertEquals(
305                                     au.getScale().toStandardUnit(testData[index])
306                                             * au2.getScale().toStandardUnit(testData2[index]),
307                                     amTim.getSI(index), tolerance, "value in m2 * m2 matches");
308                             tolerance = Double.isFinite(amDiv.getSI(index)) ? Math.abs(amDiv.getSI(index) / 10000.0d) : 0.1d;
309                             assertEquals(
310                                     au.getScale().toStandardUnit(testData[index])
311                                             / au2.getScale().toStandardUnit(testData2[index]),
312                                     amDiv.getSI(index), tolerance, "value in m2 / m2 matches (could be NaN)");
313                         }
314                         // This does not compile: SIVector amTim2 = am.immutable().multiplyBy(am2).immutable();
315                     }
316                 }
317             }
318         }
319     }
320 
321     /**
322      * Test setDisplayUnit.
323      */
324     @Test
325     public final void testSetDisplayUnit()
326     {
327         SpeedVector s = new SpeedVector(new double[] {10.0, 20.0}, SpeedUnit.KM_PER_HOUR);
328         SpeedVector t = s.setDisplayUnit(SpeedUnit.MILE_PER_HOUR);
329         assertTrue(s == t);
330         SpeedVector u = new SpeedVector(new double[] {10.0, 20.0}).setDisplayUnit(SpeedUnit.KM_PER_HOUR);
331         assertEquals(SpeedUnit.KM_PER_HOUR, u.getDisplayUnit());
332         assertEquals(10.0, u.getSI(0));
333     }
334 
335     /**
336      * Test if mutable methods give an error in case the vector is immutable.
337      */
338     @Test
339     public void testImmutableVector()
340     {
341         double[] denseTestData = DOUBLEVECTOR.denseArray(105);
342         double[] sparseTestData = DOUBLEVECTOR.sparseArray(105);
343 
344         for (StorageType storageType : new StorageType[] {StorageType.DENSE, StorageType.SPARSE})
345         {
346             for (AreaUnit au : new AreaUnit[] {AreaUnit.SQUARE_METER, AreaUnit.ACRE})
347             {
348                 double[] testData = storageType.equals(StorageType.DENSE) ? denseTestData : sparseTestData;
349                 AreaVector am = new AreaVector(DoubleVectorData.instantiate(testData, au.getScale(), storageType), au);
350                 am = am.immutable();
351                 final AreaVector amPtr = am;
352                 Area fa = Area.of(10.0d, "m^2");
353                 UnitTest.testFail(() -> amPtr.assign(DoubleMathFunctions.ABS),
354                         "ImmutableVector.assign(...) should throw error");
355                 UnitTest.testFail(() -> amPtr.decrementBy(fa), "ImmutableVector.decrementBy(scalar) should throw error");
356                 UnitTest.testFail(() -> amPtr.decrementBy(amPtr), "ImmutableVector.decrementBy(vector) should throw error");
357                 UnitTest.testFail(() -> amPtr.incrementBy(fa), "ImmutableVector.incrementBy(scalar) should throw error");
358                 UnitTest.testFail(() -> amPtr.incrementBy(amPtr), "ImmutableVector.incrementBy(vector) should throw error");
359                 UnitTest.testFail(() -> amPtr.divideBy(2.0d), "ImmutableVector.divideBy(factor) should throw error");
360                 UnitTest.testFail(() -> amPtr.multiplyBy(2.0d), "ImmutableVector.multiplyBy(factor) should throw error");
361                 UnitTest.testFail(() -> amPtr.set(1, fa), "ImmutableVector.set() should throw error");
362                 UnitTest.testFail(() -> amPtr.setSI(1, 20.1d), "ImmutableVector.setSI() should throw error");
363                 UnitTest.testFail(() -> amPtr.setInUnit(1, 15.2d), "ImmutableVector.setInUnit(f) should throw error");
364                 UnitTest.testFail(() -> amPtr.setInUnit(1, 15.2d, AreaUnit.ARE),
365                         "ImmutableVector.setInUnit(f, u) should throw error");
366                 UnitTest.testFail(() -> amPtr.abs(), "ImmutableVector.abs() should throw error");
367                 UnitTest.testFail(() -> amPtr.ceil(), "ImmutableVector.ceil() should throw error");
368                 UnitTest.testFail(() -> amPtr.floor(), "ImmutableVector.floor() should throw error");
369                 UnitTest.testFail(() -> amPtr.neg(), "ImmutableVector.neg() should throw error");
370                 UnitTest.testFail(() -> amPtr.rint(), "ImmutableVector.rint() should throw error");
371             }
372         }
373     }
374 
375     /**
376      * Test toString() methods. TODO: expand?
377      */
378     @Test
379     public void testVectorToString()
380     {
381         double[] denseTestData = DOUBLEVECTOR.denseArray(105);
382         double[] sparseTestData = DOUBLEVECTOR.sparseArray(105);
383 
384         for (StorageType storageType : new StorageType[] {StorageType.DENSE, StorageType.SPARSE})
385         {
386             for (AreaUnit au : new AreaUnit[] {AreaUnit.SQUARE_METER, AreaUnit.ACRE})
387             {
388                 double[] testData = storageType.equals(StorageType.DENSE) ? denseTestData : sparseTestData;
389                 AreaVector am = new AreaVector(DoubleVectorData.instantiate(testData, au.getScale(), storageType), au);
390                 String s1 = am.toString(); // non-verbose with unit
391                 assertTrue(s1.contains(au.getDefaultTextualAbbreviation()));
392                 String s2 = am.toString(AreaUnit.SQUARE_INCH); // non-verbose with unit
393                 assertTrue(s2.contains(AreaUnit.SQUARE_INCH.getDefaultTextualAbbreviation()));
394                 String s3 = am.toString(AreaUnit.SQUARE_INCH, true, true); // verbose with unit
395                 assertTrue(s3.contains(AreaUnit.SQUARE_INCH.getDefaultTextualAbbreviation()));
396                 if (storageType.equals(StorageType.DENSE))
397                 {
398                     assertTrue(s3.contains("Dense"));
399                     assertFalse(s3.contains("Sparse"));
400                 }
401                 else
402                 {
403                     assertFalse(s3.contains("Dense"));
404                     assertTrue(s3.contains("Sparse"));
405                 }
406                 assertTrue(s3.contains("Rel"));
407                 assertFalse(s3.contains("Abs"));
408                 assertTrue(s3.contains("Immutable"));
409                 assertFalse(s3.contains("Mutable"));
410                 AreaVector ammut = am.mutable();
411                 String smut = ammut.toString(AreaUnit.SQUARE_INCH, true, true); // verbose with unit
412                 assertFalse(smut.contains("Immutable"));
413                 assertTrue(smut.contains("Mutable"));
414                 String sNotVerbose = ammut.toString(false, false);
415                 assertFalse(sNotVerbose.contains("Rel"));
416                 assertFalse(sNotVerbose.contains("Abs"));
417                 assertFalse(sNotVerbose.contains("Immutable"));
418                 assertFalse(sNotVerbose.contains("Mutable"));
419                 assertFalse(sNotVerbose.contains(au.getDefaultTextualAbbreviation()));
420             }
421         }
422         TimeVector tm = new TimeVector(
423                 DoubleVectorData.instantiate(denseTestData, TimeUnit.DEFAULT.getScale(), StorageType.DENSE), TimeUnit.DEFAULT);
424         String st = tm.toString(TimeUnit.DEFAULT, true, true); // verbose with unit
425         assertFalse(st.contains("Rel"));
426         assertTrue(st.contains("Abs"));
427         LengthVector lm = new LengthVector(
428                 DoubleVectorData.instantiate(denseTestData, LengthUnit.SI.getScale(), StorageType.DENSE), LengthUnit.SI);
429         String sl = lm.toString(LengthUnit.SI, true, true); // verbose with unit
430         assertTrue(sl.contains("Rel"));
431         assertFalse(sl.contains("Abs"));
432     }
433 
434     /**
435      * Test the extra methods that Absolute and Relative with Absolute matrices implement.
436      */
437     @Test
438     public void testSpecialVectorMethodsRelWithAbs()
439     {
440         double[] denseTestData = DOUBLEVECTOR.denseArray(105);
441         TimeVector tm = new TimeVector(
442                 DoubleVectorData.instantiate(denseTestData, TimeUnit.DEFAULT.getScale(), StorageType.DENSE), TimeUnit.DEFAULT);
443         DurationVector dm = new DurationVector(
444                 DoubleVectorData.instantiate(denseTestData, DurationUnit.MINUTE.getScale(), StorageType.DENSE),
445                 DurationUnit.SECOND);
446         assertTrue(tm.isAbsolute());
447         assertFalse(dm.isAbsolute());
448         assertFalse(tm.isRelative());
449         assertTrue(dm.isRelative());
450 
451         TimeVector absPlusRel = tm.plus(dm);
452         TimeVector absMinusRel = tm.minus(dm);
453         double[] halfDenseData = DOUBLEVECTOR.denseArray(105);
454         for (int index = 0; index < halfDenseData.length; index++)
455         {
456             halfDenseData[index] *= 0.5;
457         }
458         TimeVector halfTimeVector = new TimeVector(
459                 DoubleVectorData.instantiate(halfDenseData, TimeUnit.DEFAULT.getScale(), StorageType.DENSE), TimeUnit.DEFAULT);
460         DurationVector absMinusAbs = tm.minus(halfTimeVector);
461         TimeVector absDecByRelS = tm.mutable().decrementBy(Duration.of(1.0d, "min"));
462         TimeVector absDecByRelM = tm.mutable().decrementBy(dm.divide(2.0d));
463         TimeVector relPlusAbs = dm.plus(tm);
464         for (int index = 0; index < denseTestData.length; index++)
465         {
466             assertEquals(61.0 * denseTestData[index], absPlusRel.getSI(index), 0.01, "absPlusRel");
467             assertEquals(-59.0 * denseTestData[index], absMinusRel.getSI(index), 0.01, "absMinusRel");
468             assertEquals(denseTestData[index] / 2.0, absMinusAbs.getSI(index), 0.01, "absMinusAbs");
469             assertEquals(denseTestData[index] - 60.0, absDecByRelS.getSI(index), 0.01, "absDecByRelS");
470             assertEquals(-29.0 * denseTestData[index], absDecByRelM.getSI(index), 0.01, "absDecByRelM");
471             assertEquals(61.0 * denseTestData[index], relPlusAbs.getSI(index), 0.01, "relPlusAbs");
472         }
473         for (int dLength : new int[] {-1, 1})
474         {
475             double[] other = DOUBLEVECTOR.denseArray(denseTestData.length + dLength);
476             TimeVector wrongTimeVector = new TimeVector(
477                     DoubleVectorData.instantiate(other, TimeUnit.DEFAULT.getScale(), StorageType.DENSE), TimeUnit.DEFAULT);
478             try
479             {
480                 tm.mutable().minus(wrongTimeVector);
481                 fail("Mismatching size should have thrown a ValueRuntimeException");
482             }
483             catch (ValueRuntimeException vre)
484             {
485                 // Ignore expected exception
486             }
487         }
488         assertTrue(DoubleVectorData.instantiate(denseTestData, TimeUnit.DEFAULT.getScale(), StorageType.DENSE).toString()
489                 .startsWith("DoubleVectorData"), "toString returns something informative");
490     }
491 
492     /**
493      * Test the instantiateAbs method and instantiateScalarAbsSI method.
494      */
495     @Test
496     public void testInstantiateAbs()
497     {
498         double[] denseTestData = DOUBLEVECTOR.denseArray(105);
499         TimeVector timeVector = new TimeVector(
500                 DoubleVectorData.instantiate(denseTestData, TimeUnit.DEFAULT.getScale(), StorageType.DENSE), TimeUnit.DEFAULT);
501         DurationVector durationVector = new DurationVector(
502                 DoubleVectorData.instantiate(denseTestData, DurationUnit.MINUTE.getScale(), StorageType.DENSE),
503                 DurationUnit.SECOND);
504 
505         double[] halfDenseData = DOUBLEVECTOR.denseArray(105);
506         for (int index = 0; index < halfDenseData.length; index++)
507         {
508             halfDenseData[index] *= 0.5;
509         }
510         TimeVector relPlusAbsTime = durationVector.plus(timeVector);
511         for (int index = 0; index < denseTestData.length; index++)
512         {
513             assertEquals(61.0 * denseTestData[index], relPlusAbsTime.getSI(index), 0.01, "relPlusAbsTime");
514         }
515         Time time = durationVector.instantiateScalarAbsSI(123.456f, TimeUnit.EPOCH_DAY);
516         assertEquals(TimeUnit.EPOCH_DAY, time.getDisplayUnit(), "Unit of instantiateScalarAbsSI matches");
517         assertEquals(123.456f, time.si, 0.1, "Value of instantiateScalarAbsSI matches");
518 
519         AngleVector angleVector = new AngleVector(
520                 DoubleVectorData.instantiate(denseTestData, AngleUnit.DEGREE.getScale(), StorageType.DENSE), AngleUnit.DEGREE);
521         DirectionVector directionVector = new DirectionVector(
522                 DoubleVectorData.instantiate(denseTestData, DirectionUnit.EAST_DEGREE.getScale(), StorageType.DENSE),
523                 DirectionUnit.EAST_DEGREE);
524 
525         DirectionVector relPlusAbsDirection = angleVector.plus(directionVector);
526         for (int index = 0; index < denseTestData.length; index++)
527         {
528             assertEquals(2.0 / 180 * Math.PI * denseTestData[index], relPlusAbsDirection.getSI(index), 0.01,
529                     "relPlusAbsDirection");
530         }
531         Direction direction = angleVector.instantiateScalarAbsSI(123.456f, DirectionUnit.NORTH_RADIAN);
532         assertEquals(DirectionUnit.NORTH_RADIAN, direction.getDisplayUnit(), "Unit of instantiateScalarAbsSI matches");
533         assertEquals(123.456f, direction.si, 0.1, "Value of instantiateScalarAbsSI matches");
534 
535         TemperatureVector temperatureVector = new TemperatureVector(
536                 DoubleVectorData.instantiate(denseTestData, TemperatureUnit.DEGREE_FAHRENHEIT.getScale(), StorageType.DENSE),
537                 TemperatureUnit.DEGREE_FAHRENHEIT);
538         AbsoluteTemperatureVector absoluteTemperatureVector = new AbsoluteTemperatureVector(
539                 DoubleVectorData.instantiate(denseTestData, AbsoluteTemperatureUnit.KELVIN.getScale(), StorageType.DENSE),
540                 AbsoluteTemperatureUnit.KELVIN);
541 
542         AbsoluteTemperatureVector relPlusAbsTemperature = temperatureVector.plus(absoluteTemperatureVector);
543         for (int index = 0; index < denseTestData.length; index++)
544         {
545             assertEquals((1.0 + 5.0 / 9.0) * denseTestData[index], relPlusAbsTemperature.getSI(index), 0.01,
546                     "relPlusAbsTemperature");
547         }
548         AbsoluteTemperature absoluteTemperature =
549                 temperatureVector.instantiateScalarAbsSI(123.456f, AbsoluteTemperatureUnit.DEGREE_FAHRENHEIT);
550         assertEquals(AbsoluteTemperatureUnit.DEGREE_FAHRENHEIT, absoluteTemperature.getDisplayUnit(),
551                 "Unit of instantiateScalarAbsSI matches");
552         assertEquals(123.456f, absoluteTemperature.si, 0.1, "Value of instantiateScalarAbsSI matches");
553 
554         LengthVector lengthVector = new LengthVector(
555                 DoubleVectorData.instantiate(denseTestData, LengthUnit.MILE.getScale(), StorageType.DENSE), LengthUnit.MILE);
556         PositionVector positionVector = new PositionVector(
557                 DoubleVectorData.instantiate(denseTestData, PositionUnit.KILOMETER.getScale(), StorageType.DENSE),
558                 PositionUnit.KILOMETER);
559 
560         PositionVector relPlusAbsPosition = lengthVector.plus(positionVector);
561         for (int index = 0; index < denseTestData.length; index++)
562         {
563             assertEquals(2609.344 * denseTestData[index], relPlusAbsPosition.getSI(index), 1, "relPlusAbsPosition");
564         }
565         Position position = lengthVector.instantiateScalarAbsSI(123.456f, PositionUnit.ANGSTROM);
566         assertEquals(PositionUnit.ANGSTROM, position.getDisplayUnit(), "Unit of instantiateScalarAbsSI matches");
567         assertEquals(123.456f, position.si, 0.1, "Value of instantiateScalarAbsSI matches");
568     }
569 
570     /**
571      * Test the equals method.
572      */
573     @SuppressWarnings("unlikely-arg-type")
574     @Test
575     public void testEquals()
576     {
577         double[] testData = DOUBLEVECTOR.denseArray(123);
578         testData[2] = 0;
579         for (StorageType storageType : new StorageType[] {StorageType.DENSE, StorageType.SPARSE})
580         {
581             DoubleVectorData dvd = DoubleVectorData.instantiate(testData, TemperatureUnit.KELVIN.getScale(), storageType);
582             assertTrue(dvd.equals(dvd), "Double vector data is equal to itself");
583             assertFalse(dvd.equals(null), "Double vector data is not equal to null");
584             assertFalse(dvd.equals("some string"), "Double vector data is not equal to some string");
585             assertTrue(dvd.equals(dvd.toSparse()), "Double vector is equal to sparse version of itself");
586             assertTrue(dvd.equals(dvd.toDense()), "Double vector is equal to dense version of itself");
587             for (StorageType storageType2 : new StorageType[] {StorageType.DENSE, StorageType.SPARSE})
588             {
589                 DoubleVectorData dvd2 = DoubleVectorData.instantiate(testData, TemperatureUnit.KELVIN.getScale(), storageType2);
590                 assertEquals(dvd, dvd2,
591                         "Double vector data is equal to other double vector containing same values regardless of storage type");
592                 double[] testData2 = DOUBLEVECTOR.denseArray(122);
593                 testData2[2] = 0;
594                 dvd2 = DoubleVectorData.instantiate(testData2, TemperatureUnit.KELVIN.getScale(), storageType2);
595                 assertFalse(dvd.equals(dvd2),
596                         "Double vector data is not equal to other double vector containing same values except last one");
597                 testData2 = DOUBLEVECTOR.denseArray(123);
598                 dvd2 = DoubleVectorData.instantiate(testData2, TemperatureUnit.KELVIN.getScale(), storageType2);
599                 assertFalse(dvd.equals(dvd2),
600                         "Double vector data is not equal to other double vector containing same values except for one zero");
601             }
602         }
603     }
604 
605     /**
606      * Test the plus and similar methods.
607      */
608     @Test
609     public void operationTest()
610     {
611         double[] testValues = new double[] {0, 123.456d, 0, -273.15, -273.15, 0, -273.15, 234.567d, 0, 0};
612         double[] testValues2 = new double[] {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
613         for (AbsoluteTemperatureUnit temperatureUnit : new AbsoluteTemperatureUnit[] {AbsoluteTemperatureUnit.KELVIN,
614                 AbsoluteTemperatureUnit.DEGREE_CELSIUS, AbsoluteTemperatureUnit.DEGREE_FAHRENHEIT})
615         {
616             for (StorageType storageType : new StorageType[] {StorageType.DENSE, StorageType.SPARSE})
617             {
618                 AbsoluteTemperatureVector atv = new AbsoluteTemperatureVector(testValues, temperatureUnit, storageType);
619                 for (TemperatureUnit relativeTemperatureUnit : new TemperatureUnit[] {TemperatureUnit.KELVIN,
620                         TemperatureUnit.DEGREE_CELSIUS, TemperatureUnit.DEGREE_FAHRENHEIT})
621                 {
622                     for (StorageType storageType2 : new StorageType[] {StorageType.DENSE, StorageType.SPARSE})
623                     {
624                         TemperatureVector rtv = new TemperatureVector(testValues2, relativeTemperatureUnit, storageType2);
625                         AbsoluteTemperatureVector sumtv = atv.plus(rtv);
626                         compareSum(atv.getValuesInUnit(AbsoluteTemperatureUnit.KELVIN),
627                                 rtv.getValuesInUnit(TemperatureUnit.KELVIN),
628                                 sumtv.getValuesInUnit(AbsoluteTemperatureUnit.KELVIN));
629                         AbsoluteTemperatureVector difftv = atv.minus(rtv);
630                         compareSum(rtv.getValuesInUnit(TemperatureUnit.KELVIN),
631                                 difftv.getValuesInUnit(AbsoluteTemperatureUnit.KELVIN),
632                                 atv.getValuesInUnit(AbsoluteTemperatureUnit.KELVIN));
633 
634                         String s = atv.toString(temperatureUnit);
635                         assertTrue(s.startsWith("["), "toString returns something sensible");
636                         assertTrue(s.endsWith("] " + temperatureUnit.toString()), "toString returns something sensible");
637                         // System.out.println(atv.toString(true, true));
638                         s = atv.toString(true, true);
639                         assertTrue(s.contains("Immutable"), "toString includes Immutable");
640                         assertTrue(s.contains("Abs"), "toString includes Abs");
641                         assertTrue(s.contains(atv.isDense() ? "Dense" : "Sparse"), "toString includes Dense or Sparse");
642                         assertTrue(s.endsWith("] " + temperatureUnit.toString()), "toString returns something sensible");
643                         s = atv.mutable().toString(true, true);
644                         assertTrue(s.contains("Mutable"), "toString includes Mutable");
645 
646                         s = rtv.toString();
647                         assertTrue(s.startsWith("["), "toString returns something sensible");
648                         assertTrue(s.endsWith("] " + relativeTemperatureUnit.toString()),
649                                 "toString returns something sensible");
650                         s = rtv.toString(true, true);
651                         assertTrue(s.contains("Immutable"), "toString includes Immutable");
652                         assertTrue(s.contains("Rel"), "toString includes Rel");
653                         assertTrue(s.contains(rtv.isDense() ? "Dense" : "Sparse"), "toString includes Dense or Sparse");
654                         assertTrue(s.endsWith("] " + relativeTemperatureUnit.toString()),
655                                 "toString returns something sensible");
656                         s = rtv.mutable().toString(true, true);
657                         assertTrue(s.contains("Mutable"), "toString includes Mutable");
658 
659                     }
660                 }
661             }
662         }
663     }
664 
665     /**
666      * Check that two arrays and a sum array match.
667      * @param left the left array
668      * @param right the right array
669      * @param sum the sum array
670      */
671     public void compareSum(final double[] left, final double[] right, final double[] sum)
672     {
673         assertEquals(left.length, sum.length, "length of left must equal length of sum");
674         assertEquals(right.length, sum.length, "length of right must equal length of sum");
675         for (int i = 0; i < sum.length; i++)
676         {
677             assertEquals(left[i] + right[i], sum[i], 0.001, "left plus right is sum");
678         }
679     }
680 
681 }