Class FloatDurationVector

All Implemented Interfaces:
Serializable, Cloneable, Iterable<FloatDuration>, Relative<DurationUnit,FloatDurationVector>, RelWithAbs<TimeUnit,FloatTimeVector,DurationUnit,FloatDurationVector>, Value<DurationUnit,FloatDurationVector>

@Generated(value="org.djunits.generator.GenerateDJUNIT", date="2023-07-23T14:06:38.224104100Z") public class FloatDurationVector extends FloatVectorRelWithAbs<TimeUnit,FloatTime,FloatTimeVector,DurationUnit,FloatDuration,FloatDurationVector>
Relative FloatDuration Vector.

Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
BSD-style license. See DJUNITS License.

Author:
Alexander Verbraeck, Peter Knoppers
See Also:
  • Constructor Details

    • FloatDurationVector

      public FloatDurationVector(FloatVectorData data, DurationUnit displayUnit)
      Construct a FloatDurationVector from an internal data object.
      Parameters:
      data - FloatVectorData; the internal data object for the vector
      displayUnit - DurationUnit; the display unit of the vector data
    • FloatDurationVector

      public FloatDurationVector(float[] data, DurationUnit displayUnit, StorageType storageType)
      Construct a FloatDurationVector from a float[] object. The Float values are expressed in the displayUnit, and will be printed using the displayUnit.
      Parameters:
      data - float[]; the data for the vector, expressed in the displayUnit
      displayUnit - DurationUnit; the unit of the values in the data array, and display unit when printing
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • FloatDurationVector

      public FloatDurationVector(float[] data, DurationUnit displayUnit)
      Construct a FloatDurationVector from a float[] object. The Float values are expressed in the displayUnit. Assume that the StorageType is DENSE since we offer the data as an array.
      Parameters:
      data - float[]; the data for the vector
      displayUnit - DurationUnit; the unit of the values in the data array, and display unit when printing
    • FloatDurationVector

      public FloatDurationVector(float[] data, StorageType storageType)
      Construct a FloatDurationVector from a float[] object with SI-unit values.
      Parameters:
      data - float[]; the data for the vector, in SI units
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • FloatDurationVector

      public FloatDurationVector(float[] data)
      Construct a FloatDurationVector from a float[] object with SI-unit values. Assume that the StorageType is DENSE since we offer the data as an array.
      Parameters:
      data - float[]; the data for the vector, in SI units
    • FloatDurationVector

      public FloatDurationVector(FloatDuration[] data, DurationUnit displayUnit, StorageType storageType)
      Construct a FloatDurationVector from an array of FloatDuration objects. The FloatDuration values are each expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
      Parameters:
      data - FloatDuration[]; the data for the vector
      displayUnit - DurationUnit; the display unit of the values when printing
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • FloatDurationVector

      public FloatDurationVector(FloatDuration[] data, DurationUnit displayUnit)
      Construct a FloatDurationVector from an array of FloatDuration objects. The FloatDuration values are each expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that the StorageType is DENSE since we offer the data as an array.
      Parameters:
      data - FloatDuration[]; the data for the vector
      displayUnit - DurationUnit; the display unit of the values when printing
    • FloatDurationVector

      public FloatDurationVector(FloatDuration[] data, StorageType storageType)
      Construct a FloatDurationVector from an array of FloatDuration objects. The FloatDuration values are each expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer the data as an array.
      Parameters:
      data - FloatDuration[]; the data for the vector
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • FloatDurationVector

      public FloatDurationVector(FloatDuration[] data)
      Construct a FloatDurationVector from an array of FloatDuration objects. The FloatDuration values are each expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that the StorageType is DENSE since we offer the data as an array.
      Parameters:
      data - FloatDuration[]; the data for the vector
    • FloatDurationVector

      public FloatDurationVector(List<? extends Number> data, DurationUnit displayUnit, StorageType storageType)
      Construct a FloatDurationVector from a list of Number objects or a list of FloatDuration objects. Note that the displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or FloatDuration objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatDuration objects, each FloatDuration has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
      Parameters:
      data - List<Float> or List<Duration>; the data for the vector
      displayUnit - DurationUnit; the display unit of the vector data, and the unit of the data points when the data is expressed as List<Float> or List<Number> in general
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • FloatDurationVector

      public FloatDurationVector(List<? extends Number> data, DurationUnit displayUnit)
      Construct a FloatDurationVector from a list of Number objects or a list of FloatDuration objects. Note that the displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or FloatDuration objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatDuration objects, each FloatDuration has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we offer the data as a List.
      Parameters:
      data - List<Float> or List<Duration>; the data for the vector
      displayUnit - DurationUnit; the display unit of the vector data, and the unit of the data points when the data is expressed as List<Float> or List<Number> in general
    • FloatDurationVector

      public FloatDurationVector(List<? extends Number> data, StorageType storageType)
      Construct a FloatDurationVector from a list of Number objects or a list of FloatDuration objects. When data contains numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatDuration objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
      Parameters:
      data - List<Float> or List<Duration>; the data for the vector
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • FloatDurationVector

      public FloatDurationVector(List<? extends Number> data)
      Construct a FloatDurationVector from a list of Number objects or a list of FloatDuration objects. When data contains numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatDuration objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we offer the data as a List.
      Parameters:
      data - List<Float> or List<Duration>; the data for the vector
    • FloatDurationVector

      public FloatDurationVector(Map<Integer,? extends Number> data, int size, DurationUnit displayUnit, StorageType storageType)
      Construct a FloatDurationVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of FloatDuration objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatDuration objects. In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the unit in which they will be printed. In case the map contains FloatDuration objects, each FloatDuration has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
      Parameters:
      data - Map<Integer, Float> or Map<Integer, FloatDuration>; the data for the vector
      size - int; the size off the vector, i.e., the highest index
      displayUnit - DurationUnit; the display unit of the vector data, and the unit of the data points when the data is expressed as List<Float> or List<Number> in general
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • FloatDurationVector

      public FloatDurationVector(Map<Integer,? extends Number> data, int size, DurationUnit displayUnit)
      Construct a FloatDurationVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of FloatDuration objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatDuration objects. In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the unit in which they will be printed. In case the map contains FloatDuration objects, each FloatDuration has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as a Map.
      Parameters:
      data - Map<Integer, Float> or Map<Integer, FloatDuration>; the data for the vector
      size - int; the size off the vector, i.e., the highest index
      displayUnit - DurationUnit; the display unit of the vector data, and the unit of the data points when the data is expressed as List<Float> or List<Number> in general
    • FloatDurationVector

      public FloatDurationVector(Map<Integer,? extends Number> data, int size, StorageType storageType)
      Construct a FloatDurationVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of FloatDuration objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatDuration objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
      Parameters:
      data - Map<Integer, Float> or Map<Integer, FloatDuration>; the data for the vector
      size - int; the size off the vector, i.e., the highest index
      storageType - StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
    • FloatDurationVector

      public FloatDurationVector(Map<Integer,? extends Number> data, int size)
      Construct a FloatDurationVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of FloatDuration objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatDuration objects, they each have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as a Map.
      Parameters:
      data - Map<Integer, Float> or Map<Integer, FloatDuration>; the data for the vector
      size - int; the size off the vector, i.e., the highest index
  • Method Details

    • getScalarClass

      public Class<FloatDuration> getScalarClass()
      Description copied from class: IndexedValue
      Return the class of the corresponding scalar.
      Specified by:
      getScalarClass in class IndexedValue<DurationUnit,FloatDuration,FloatDurationVector,FloatVectorData>
      Returns:
      Class<S>; the class of the corresponding scalar
    • instantiateVector

      public FloatDurationVector instantiateVector(FloatVectorData fvd, DurationUnit displayUnit)
      Description copied from class: FloatVector
      Instantiate a new vector of the class of this vector. This can be used instead of the FloatVector.instiantiate() methods in case another vector of this class is known. The method is faster than FloatVector.instantiate, and it will also work if the vector is user-defined.
      Specified by:
      instantiateVector in class FloatVector<DurationUnit,FloatDuration,FloatDurationVector>
      Parameters:
      fvd - FloatVectorData; the data used to instantiate the vector
      displayUnit - U; the display unit of the vector
      Returns:
      V; a vector of the correct type
    • instantiateScalarSI

      public FloatDuration instantiateScalarSI(float valueSI, DurationUnit displayUnit)
      Description copied from class: FloatVector
      Instantiate a new scalar for the class of this vector. This can be used instead of the FloatScalar.instiantiate() methods in case a vector of this class is known. The method is faster than FloatScalar.instantiate, and it will also work if the vector and/or scalar are user-defined.
      Specified by:
      instantiateScalarSI in class FloatVector<DurationUnit,FloatDuration,FloatDurationVector>
      Parameters:
      valueSI - float; the SI value of the scalar
      displayUnit - U; the unit in which the value will be displayed
      Returns:
      S; a scalar of the correct type, belonging to the vector type
    • instantiateVectorAbs

      public FloatTimeVector instantiateVectorAbs(FloatVectorData fvd, TimeUnit displayUnit)
      Description copied from class: FloatVectorRelWithAbs
      Instantiate a new absolute vector of the class of this relative vector. This can be used instead of the FloatVector.instiantiate() methods in case another vector of this relative with absolute class is known. The method is faster than FloatVector.instantiate, and it will also work if the vector is user-defined.
      Specified by:
      instantiateVectorAbs in class FloatVectorRelWithAbs<TimeUnit,FloatTime,FloatTimeVector,DurationUnit,FloatDuration,FloatDurationVector>
      Parameters:
      fvd - FloatVectorData; the data used to instantiate the vector
      displayUnit - AU; the display unit of the absolute vector
      Returns:
      AV; an absolute vector of the correct type, belonging to this relative vector type
    • instantiateScalarAbsSI

      public FloatTime instantiateScalarAbsSI(float valueSI, TimeUnit displayUnit)
      Description copied from class: FloatVectorRelWithAbs
      Instantiate a new absolute scalar for the class of this relative vector. This can be used instead of the FloatScalar.instiantiate() methods in case a vector of this class is known. The method is faster than FloatScalar.instantiate, and it will also work if the vector and/or scalar are user-defined.
      Specified by:
      instantiateScalarAbsSI in class FloatVectorRelWithAbs<TimeUnit,FloatTime,FloatTimeVector,DurationUnit,FloatDuration,FloatDurationVector>
      Parameters:
      valueSI - float; the SI value of the absolute scalar
      displayUnit - AU; the unit in which the absolute value will be displayed
      Returns:
      A; an absolute scalar of the correct type, belonging to this relative vector type