View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.regex.Matcher;
4   
5   import javax.annotation.Generated;
6   
7   import org.djunits.Throw;
8   import org.djunits.unit.AngularAccelerationUnit;
9   import org.djunits.unit.AngularVelocityUnit;
10  import org.djunits.unit.DimensionlessUnit;
11  import org.djunits.unit.FrequencyUnit;
12  import org.djunits.value.util.ValueUtil;
13  import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRel;
14  import org.djunits.value.vfloat.scalar.base.FloatScalar;
15  
16  /**
17   * Easy access methods for the FloatAngularAcceleration FloatScalar, which is relative by definition.
18   * <p>
19   * Copyright (c) 2013-2022 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
20   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
21   * </p>
22   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
23   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
24   */
25  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2022-03-14T11:14:15.180987200Z")
26  public class FloatAngularAcceleration extends AbstractFloatScalarRel<AngularAccelerationUnit, FloatAngularAcceleration>
27  {
28      /** */
29      private static final long serialVersionUID = 20150901L;
30  
31      /** Constant with value zero. */
32      public static final FloatAngularAccelerationlarAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration ZERO = new FloatAngularAcceleration(0.0f, AngularAccelerationUnit.SI);
33  
34      /** Constant with value one. */
35      public static final FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration ONE = new FloatAngularAcceleration(1.0f, AngularAccelerationUnit.SI);
36  
37      /** Constant with value NaN. */
38      @SuppressWarnings("checkstyle:constantname")
39      public static final FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration NaN = new FloatAngularAcceleration(Float.NaN, AngularAccelerationUnit.SI);
40  
41      /** Constant with value POSITIVE_INFINITY. */
42      public static final FloatAngularAcceleration POSITIVE_INFINITY =
43              new FloatAngularAcceleration(Float.POSITIVE_INFINITY, AngularAccelerationUnit.SI);
44  
45      /** Constant with value NEGATIVE_INFINITY. */
46      public static final FloatAngularAcceleration NEGATIVE_INFINITY =
47              new FloatAngularAcceleration(Float.NEGATIVE_INFINITY, AngularAccelerationUnit.SI);
48  
49      /** Constant with value MAX_VALUE. */
50      public static final FloatAngularAcceleration POS_MAXVALUE =
51              new FloatAngularAcceleration(Float.MAX_VALUE, AngularAccelerationUnit.SI);
52  
53      /** Constant with value -MAX_VALUE. */
54      public static final FloatAngularAcceleration NEG_MAXVALUE =
55              new FloatAngularAcceleration(-Float.MAX_VALUE, AngularAccelerationUnit.SI);
56  
57      /**
58       * Construct FloatAngularAcceleration scalar.
59       * @param value float; the float value
60       * @param unit unit for the float value
61       */
62      public FloatAngularAcceleration(final float value, final AngularAccelerationUnit unit)
63      {
64          super(value, unit);
65      }
66  
67      /**
68       * Construct FloatAngularAcceleration scalar.
69       * @param value Scalar from which to construct this instance
70       */
71      public FloatAngularAccelerationtAngularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration(final FloatAngularAcceleration value)
72      {
73          super(value);
74      }
75  
76      /**
77       * Construct FloatAngularAcceleration scalar using a double value.
78       * @param value double; the double value
79       * @param unit unit for the resulting float value
80       */
81      public FloatAngularAcceleration(final double value, final AngularAccelerationUnit unit)
82      {
83          super((float) value, unit);
84      }
85  
86      /** {@inheritDoc} */
87      @Override
88      public final FloatAngularAcceleration instantiateRel(final float value, final AngularAccelerationUnit unit)
89      {
90          return new FloatAngularAcceleration(value, unit);
91      }
92  
93      /**
94       * Construct FloatAngularAcceleration scalar.
95       * @param value float; the float value in SI units
96       * @return the new scalar with the SI value
97       */
98      public static final FloatAngularAcceleration instantiateSI(final float value)
99      {
100         return new FloatAngularAcceleration(value, AngularAccelerationUnit.SI);
101     }
102 
103     /**
104      * Interpolate between two values.
105      * @param zero the low value
106      * @param one the high value
107      * @param ratio double; the ratio between 0 and 1, inclusive
108      * @return a Scalar at the ratio between
109      */
110     public static FloatAngularAccelerationarAcceleration.html#FloatAngularAcceleration">FloatAngularAccelerationleration.html#FloatAngularAcceleration">FloatAngularAcceleration interpolate(final FloatAngularAccelerationarAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration zero, final FloatAngularAcceleration one,
111             final float ratio)
112     {
113         return new FloatAngularAcceleration(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
114                 zero.getDisplayUnit());
115     }
116 
117     /**
118      * Return the maximum value of two relative scalars.
119      * @param r1 the first scalar
120      * @param r2 the second scalar
121      * @return the maximum value of two relative scalars
122      */
123     public static FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration max(final FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration r1, final FloatAngularAcceleration r2)
124     {
125         return r1.gt(r2) ? r1 : r2;
126     }
127 
128     /**
129      * Return the maximum value of more than two relative scalars.
130      * @param r1 the first scalar
131      * @param r2 the second scalar
132      * @param rn the other scalars
133      * @return the maximum value of more than two relative scalars
134      */
135     public static FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration max(final FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration r1, final FloatAngularAcceleration r2,
136             final FloatAngularAcceleration... rn)
137     {
138         FloatAngularAcceleration maxr = r1.gt(r2) ? r1 : r2;
139         for (FloatAngularAcceleration r : rn)
140         {
141             if (r.gt(maxr))
142             {
143                 maxr = r;
144             }
145         }
146         return maxr;
147     }
148 
149     /**
150      * Return the minimum value of two relative scalars.
151      * @param r1 the first scalar
152      * @param r2 the second scalar
153      * @return the minimum value of two relative scalars
154      */
155     public static FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration min(final FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration r1, final FloatAngularAcceleration r2)
156     {
157         return r1.lt(r2) ? r1 : r2;
158     }
159 
160     /**
161      * Return the minimum value of more than two relative scalars.
162      * @param r1 the first scalar
163      * @param r2 the second scalar
164      * @param rn the other scalars
165      * @return the minimum value of more than two relative scalars
166      */
167     public static FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration min(final FloatAngularAccelerationularAcceleration.html#FloatAngularAcceleration">FloatAngularAcceleration r1, final FloatAngularAcceleration r2,
168             final FloatAngularAcceleration... rn)
169     {
170         FloatAngularAcceleration minr = r1.lt(r2) ? r1 : r2;
171         for (FloatAngularAcceleration r : rn)
172         {
173             if (r.lt(minr))
174             {
175                 minr = r;
176             }
177         }
178         return minr;
179     }
180 
181     /**
182      * Returns a FloatAngularAcceleration representation of a textual representation of a value with a unit. The String
183      * representation that can be parsed is the double value in the unit, followed by the official abbreviation of the unit.
184      * Spaces are allowed, but not required, between the value and the unit.
185      * @param text String; the textual representation to parse into a FloatAngularAcceleration
186      * @return FloatAngularAcceleration; the Scalar representation of the value in its unit
187      * @throws IllegalArgumentException when the text cannot be parsed
188      * @throws NullPointerException when the text argument is null
189      */
190     public static FloatAngularAcceleration valueOf(final String text)
191     {
192         Throw.whenNull(text, "Error parsing FloatAngularAcceleration: text to parse is null");
193         Throw.when(text.length() == 0, IllegalArgumentException.class,
194                 "Error parsing FloatAngularAcceleration: empty text to parse");
195         Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
196         if (matcher.find())
197         {
198             int index = matcher.end();
199             String unitString = text.substring(index).trim();
200             String valueString = text.substring(0, index).trim();
201             AngularAccelerationUnit unit = AngularAccelerationUnit.BASE.getUnitByAbbreviation(unitString);
202             if (unit != null)
203             {
204                 float f = Float.parseFloat(valueString);
205                 return new FloatAngularAcceleration(f, unit);
206             }
207         }
208         throw new IllegalArgumentException("Error parsing FloatAngularAcceleration from " + text);
209     }
210 
211     /**
212      * Returns a FloatAngularAcceleration based on a value and the textual representation of the unit.
213      * @param value double; the value to use
214      * @param unitString String; the textual representation of the unit
215      * @return FloatAngularAcceleration; the Scalar representation of the value in its unit
216      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
217      * @throws NullPointerException when the unitString argument is null
218      */
219     public static FloatAngularAcceleration of(final float value, final String unitString)
220     {
221         Throw.whenNull(unitString, "Error parsing FloatAngularAcceleration: unitString is null");
222         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
223                 "Error parsing FloatAngularAcceleration: empty unitString");
224         AngularAccelerationUnit unit = AngularAccelerationUnit.BASE.getUnitByAbbreviation(unitString);
225         if (unit != null)
226         {
227             return new FloatAngularAcceleration(value, unit);
228         }
229         throw new IllegalArgumentException("Error parsing FloatAngularAcceleration with unit " + unitString);
230     }
231 
232     /**
233      * Calculate the division of FloatAngularAcceleration and FloatAngularAcceleration, which results in a FloatDimensionless
234      * scalar.
235      * @param v FloatAngularAcceleration; scalar
236      * @return FloatDimensionless; scalar as a division of FloatAngularAcceleration and FloatAngularAcceleration
237      */
238     public final FloatDimensionless divide(final FloatAngularAcceleration v)
239     {
240         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
241     }
242 
243     /**
244      * Calculate the multiplication of FloatAngularAcceleration and FloatDuration, which results in a FloatAngularVelocity
245      * scalar.
246      * @param v FloatAngularAcceleration; scalar
247      * @return FloatAngularVelocity; scalar as a multiplication of FloatAngularAcceleration and FloatDuration
248      */
249     public final FloatAngularVelocity times(final FloatDuration v)
250     {
251         return new FloatAngularVelocity(this.si * v.si, AngularVelocityUnit.SI);
252     }
253 
254     /**
255      * Calculate the division of FloatAngularAcceleration and FloatFrequency, which results in a FloatAngularVelocity scalar.
256      * @param v FloatAngularAcceleration; scalar
257      * @return FloatAngularVelocity; scalar as a division of FloatAngularAcceleration and FloatFrequency
258      */
259     public final FloatAngularVelocity divide(final FloatFrequency v)
260     {
261         return new FloatAngularVelocity(this.si / v.si, AngularVelocityUnit.SI);
262     }
263 
264     /**
265      * Calculate the division of FloatAngularAcceleration and FloatAngularVelocity, which results in a FloatFrequency scalar.
266      * @param v FloatAngularAcceleration; scalar
267      * @return FloatFrequency; scalar as a division of FloatAngularAcceleration and FloatAngularVelocity
268      */
269     public final FloatFrequency divide(final FloatAngularVelocity v)
270     {
271         return new FloatFrequency(this.si / v.si, FrequencyUnit.SI);
272     }
273 
274     /** {@inheritDoc} */
275     @Override
276     public FloatSIScalar reciprocal()
277     {
278         return FloatScalar.divide(FloatDimensionless.ONE, this);
279     }
280 
281 }