Class FloatMatrixDataSparse
java.lang.Object
org.djunits.value.storage.AbstractStorage<FloatMatrixData>
org.djunits.value.vfloat.matrix.data.FloatMatrixData
org.djunits.value.vfloat.matrix.data.FloatMatrixDataSparse
- All Implemented Interfaces:
Serializable
,Cloneable
public class FloatMatrixDataSparse extends FloatMatrixData
Stores sparse data for a FloatMatrix and carries out basic operations. The index in the sparse matrix data is calculated as
r * columns + c
, where r is the row number, cols is the total number of columns, and c is the column number.
Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
BSD-style license. See OpenTrafficSim License.
- Author:
- Alexander Verbraeck, Peter Knoppers
- See Also:
- Serialized Form
-
Field Summary
Fields inherited from class org.djunits.value.vfloat.matrix.data.FloatMatrixData
cols, matrixSI, rows
-
Constructor Summary
Constructors Constructor Description FloatMatrixDataSparse(float[] matrixSI, long[] indices, int rows, int cols)
Create a matrix with sparse data.FloatMatrixDataSparse(Collection<FloatSparseValue<U,S>> dataSI, int rows, int cols)
Create a matrix with sparse data. -
Method Summary
Modifier and Type Method Description FloatMatrixData
assign(FloatFunction floatFunction)
Apply an operation to each cell.FloatMatrixDataSparse
assign(FloatFunction2 floatFunction, FloatMatrixData right)
Apply a binary operation on a cell by cell basis.int
cardinality()
Compute and return the number of non-zero cells in this indexed value.FloatMatrixDataSparse
copy()
Create and return a deep copy of the data.FloatMatrixData
divide(FloatMatrixData right)
Divide two matrices on a cell-by-cell basis.boolean
equals(Object obj)
float[][]
getDenseMatrixSI()
Create and return a deep copy of the data in dense format.double[][]
getDoubleDenseMatrixSI()
Create and return a deep copy of the data in dense format.float
getSI(int row, int col)
Retrieve one value from this data.int
hashCode()
static FloatMatrixDataSparse
instantiate(float[][] valuesSI)
Instantiate a FloatMatrixDataSparse from an array.static FloatMatrixDataSparse
instantiate(float[][] values, Scale scale)
Instantiate a FloatMatrixDataSparse from an array.FloatMatrixData
minus(FloatMatrixData right)
Subtract two matrices on a cell-by-cell basis.FloatMatrixData
plus(FloatMatrixData right)
Add two matrices on a cell-by-cell basis.void
setSI(int row, int col, float valueSI)
Sets a value at the [row, col] point in the matrix.FloatMatrixData
times(FloatMatrixData right)
Multiply two matrices on a cell-by-cell basis.FloatMatrixDataDense
toDense()
Return the data of this matrix in dense storage format.FloatMatrixDataSparse
toSparse()
Return the data of this matrix in sparse storage format.Methods inherited from class org.djunits.value.vfloat.matrix.data.FloatMatrixData
checkRectangularAndNonEmpty, checkRectangularAndNonEmpty, checkSizes, cols, compareDenseMatrixWithSparseMatrix, decrementBy, divideBy, incrementBy, instantiate, instantiate, instantiate, multiplyBy, rows, toString, zSum
Methods inherited from class org.djunits.value.storage.AbstractStorage
getStorageType, isDense, isSparse
-
Constructor Details
-
FloatMatrixDataSparse
public FloatMatrixDataSparse(float[] matrixSI, long[] indices, int rows, int cols)Create a matrix with sparse data.- Parameters:
matrixSI
- float[]; the data to storeindices
- long[]; the index values of the Matrix, with <tt>index = row * cols + col</tt>rows
- int; the number of rowscols
- int; the number of columns
-
FloatMatrixDataSparse
public FloatMatrixDataSparse(Collection<FloatSparseValue<U,S>> dataSI, int rows, int cols) throws NullPointerExceptionCreate a matrix with sparse data.- Type Parameters:
U
- the unit typeS
- the corresponding scalar type- Parameters:
dataSI
- Collection<FloatSparseValue<U, S>>; the sparse [X, Y, SI] values to storerows
- int; the number of rows of the matrixcols
- int; the number of columns of the matrix- Throws:
NullPointerException
- when storageType is null or dataSI is null
-
-
Method Details
-
cardinality
public final int cardinality()Compute and return the number of non-zero cells in this indexed value.- Specified by:
cardinality
in classAbstractStorage<FloatMatrixData>
- Returns:
- int; the number of non-zero cells
-
assign
Apply an operation to each cell.- Specified by:
assign
in classFloatMatrixData
- Parameters:
floatFunction
- FloatFunction; the operation to apply- Returns:
- FloatMatrixData; this (modified) double vector data object
-
assign
Apply a binary operation on a cell by cell basis.- Specified by:
assign
in classFloatMatrixData
- Parameters:
floatFunction
- FloatFunction2; the binary operation to applyright
- FloatMatrixData; the right operand for the binary operation- Returns:
- FloatMatrixData; this (modified) double matrix data object
-
toDense
Return the data of this matrix in dense storage format.- Specified by:
toDense
in classFloatMatrixData
- Returns:
- FloatMatrixDataDense; the dense transformation of this data
-
toSparse
Return the data of this matrix in sparse storage format.- Specified by:
toSparse
in classFloatMatrixData
- Returns:
- FloatMatrixDataSparse; the sparse transformation of this data
-
getSI
public final float getSI(int row, int col)Retrieve one value from this data.- Specified by:
getSI
in classFloatMatrixData
- Parameters:
row
- int; the row number to get the value forcol
- int; the column number to get the value for- Returns:
- the value at the [row, col] point
-
setSI
public final void setSI(int row, int col, float valueSI)Sets a value at the [row, col] point in the matrix.- Specified by:
setSI
in classFloatMatrixData
- Parameters:
row
- int; the row number to set the value forcol
- int; the column number to set the value forvalueSI
- float; the value at the index
-
getDenseMatrixSI
public final float[][] getDenseMatrixSI()Create and return a deep copy of the data in dense format. The float array is of the form f[rows][columns] so each value can be found with f[row][column].- Specified by:
getDenseMatrixSI
in classFloatMatrixData
- Returns:
- float[][]; a safe, dense copy of matrixSI as a matrix
-
getDoubleDenseMatrixSI
public final double[][] getDoubleDenseMatrixSI()Create and return a deep copy of the data in dense format. The double array is of the form d[rows][columns] so each value can be found with d[row][column].- Specified by:
getDoubleDenseMatrixSI
in classFloatMatrixData
- Returns:
- double[][]; a safe, dense copy of matrixSI as a matrix
-
copy
Create and return a deep copy of the data.- Specified by:
copy
in classAbstractStorage<FloatMatrixData>
- Returns:
- T; a deep copy of the data
-
instantiate
Instantiate a FloatMatrixDataSparse from an array.- Parameters:
valuesSI
- float[][]; the (SI) values to store- Returns:
- the FloatMatrixDataSparse
- Throws:
ValueRuntimeException
- in case matrix is ragged
-
instantiate
public static FloatMatrixDataSparse instantiate(float[][] values, Scale scale) throws ValueRuntimeExceptionInstantiate a FloatMatrixDataSparse from an array.- Parameters:
values
- float[][]; the values to storescale
- Scale; the scale that will convert values to SI- Returns:
- the DoubleMatrixDataSparse
- Throws:
ValueRuntimeException
- in case matrix is ragged
-
plus
Add two matrices on a cell-by-cell basis. If both matrices are sparse, a sparse matrix is returned, otherwise a dense matrix is returned.- Specified by:
plus
in classFloatMatrixData
- Parameters:
right
- FloatMatrixData; the other data object to add- Returns:
- the sum of this data object and the other data object
- Throws:
ValueRuntimeException
- if matrices have different lengths
-
minus
Subtract two matrices on a cell-by-cell basis. If both matrices are sparse, a sparse matrix is returned, otherwise a dense matrix is returned.- Specified by:
minus
in classFloatMatrixData
- Parameters:
right
- FloatMatrixData; the other data object to subtract- Returns:
- the sum of this data object and the other data object
-
times
Multiply two matrices on a cell-by-cell basis. If both matrices are dense, a dense matrix is returned, otherwise a sparse matrix is returned.- Specified by:
times
in classFloatMatrixData
- Parameters:
right
- FloatMatrixData; the other data object to multiply with- Returns:
- FloatMatrixData; a new double matrix data store holding the result of the multiplications
- Throws:
ValueRuntimeException
- if matrices have different sizes
-
divide
Divide two matrices on a cell-by-cell basis. If both matrices are dense, a dense matrix is returned, otherwise a sparse matrix is returned.- Specified by:
divide
in classFloatMatrixData
- Parameters:
right
- FloatMatrixData; the other data object to divide by- Returns:
- the sum of this data object and the other data object
- Throws:
ValueRuntimeException
- if matrices have different sizes
-
hashCode
public int hashCode()- Overrides:
hashCode
in classFloatMatrixData
-
equals
- Overrides:
equals
in classFloatMatrixData
-