Class FloatMatrixDataSparse

All Implemented Interfaces:
Serializable, Cloneable

public class FloatMatrixDataSparse
extends FloatMatrixData
Stores sparse data for a FloatMatrix and carries out basic operations. The index in the sparse matrix data is calculated as r * columns + c, where r is the row number, cols is the total number of columns, and c is the column number.

Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
BSD-style license. See OpenTrafficSim License.

Author:
Alexander Verbraeck, Peter Knoppers
See Also:
Serialized Form
  • Constructor Details

    • FloatMatrixDataSparse

      public FloatMatrixDataSparse​(float[] matrixSI, long[] indices, int rows, int cols)
      Create a matrix with sparse data.
      Parameters:
      matrixSI - float[]; the data to store
      indices - long[]; the index values of the Matrix, with <tt>index = row * cols + col</tt>
      rows - int; the number of rows
      cols - int; the number of columns
    • FloatMatrixDataSparse

      public FloatMatrixDataSparse​(Collection<FloatSparseValue<U,​S>> dataSI, int rows, int cols) throws NullPointerException
      Create a matrix with sparse data.
      Type Parameters:
      U - the unit type
      S - the corresponding scalar type
      Parameters:
      dataSI - Collection<FloatSparseValue<U, S>>; the sparse [X, Y, SI] values to store
      rows - int; the number of rows of the matrix
      cols - int; the number of columns of the matrix
      Throws:
      NullPointerException - when storageType is null or dataSI is null
  • Method Details

    • cardinality

      public final int cardinality()
      Compute and return the number of non-zero cells in this indexed value.
      Specified by:
      cardinality in class AbstractStorage<FloatMatrixData>
      Returns:
      int; the number of non-zero cells
    • assign

      public FloatMatrixData assign​(FloatFunction floatFunction)
      Apply an operation to each cell.
      Specified by:
      assign in class FloatMatrixData
      Parameters:
      floatFunction - FloatFunction; the operation to apply
      Returns:
      FloatMatrixData; this (modified) double vector data object
    • assign

      public final FloatMatrixDataSparse assign​(FloatFunction2 floatFunction, FloatMatrixData right)
      Apply a binary operation on a cell by cell basis.
      Specified by:
      assign in class FloatMatrixData
      Parameters:
      floatFunction - FloatFunction2; the binary operation to apply
      right - FloatMatrixData; the right operand for the binary operation
      Returns:
      FloatMatrixData; this (modified) double matrix data object
    • toDense

      public final FloatMatrixDataDense toDense()
      Return the data of this matrix in dense storage format.
      Specified by:
      toDense in class FloatMatrixData
      Returns:
      FloatMatrixDataDense; the dense transformation of this data
    • toSparse

      public final FloatMatrixDataSparse toSparse()
      Return the data of this matrix in sparse storage format.
      Specified by:
      toSparse in class FloatMatrixData
      Returns:
      FloatMatrixDataSparse; the sparse transformation of this data
    • getSI

      public final float getSI​(int row, int col)
      Retrieve one value from this data.
      Specified by:
      getSI in class FloatMatrixData
      Parameters:
      row - int; the row number to get the value for
      col - int; the column number to get the value for
      Returns:
      the value at the [row, col] point
    • setSI

      public final void setSI​(int row, int col, float valueSI)
      Sets a value at the [row, col] point in the matrix.
      Specified by:
      setSI in class FloatMatrixData
      Parameters:
      row - int; the row number to set the value for
      col - int; the column number to set the value for
      valueSI - float; the value at the index
    • getDenseMatrixSI

      public final float[][] getDenseMatrixSI()
      Create and return a deep copy of the data in dense format. The float array is of the form f[rows][columns] so each value can be found with f[row][column].
      Specified by:
      getDenseMatrixSI in class FloatMatrixData
      Returns:
      float[][]; a safe, dense copy of matrixSI as a matrix
    • getDoubleDenseMatrixSI

      public final double[][] getDoubleDenseMatrixSI()
      Create and return a deep copy of the data in dense format. The double array is of the form d[rows][columns] so each value can be found with d[row][column].
      Specified by:
      getDoubleDenseMatrixSI in class FloatMatrixData
      Returns:
      double[][]; a safe, dense copy of matrixSI as a matrix
    • copy

      public final FloatMatrixDataSparse copy()
      Create and return a deep copy of the data.
      Specified by:
      copy in class AbstractStorage<FloatMatrixData>
      Returns:
      T; a deep copy of the data
    • instantiate

      public static FloatMatrixDataSparse instantiate​(float[][] valuesSI) throws ValueRuntimeException
      Instantiate a FloatMatrixDataSparse from an array.
      Parameters:
      valuesSI - float[][]; the (SI) values to store
      Returns:
      the FloatMatrixDataSparse
      Throws:
      ValueRuntimeException - in case matrix is ragged
    • instantiate

      public static FloatMatrixDataSparse instantiate​(float[][] values, Scale scale) throws ValueRuntimeException
      Instantiate a FloatMatrixDataSparse from an array.
      Parameters:
      values - float[][]; the values to store
      scale - Scale; the scale that will convert values to SI
      Returns:
      the DoubleMatrixDataSparse
      Throws:
      ValueRuntimeException - in case matrix is ragged
    • plus

      public FloatMatrixData plus​(FloatMatrixData right) throws ValueRuntimeException
      Add two matrices on a cell-by-cell basis. If both matrices are sparse, a sparse matrix is returned, otherwise a dense matrix is returned.
      Specified by:
      plus in class FloatMatrixData
      Parameters:
      right - FloatMatrixData; the other data object to add
      Returns:
      the sum of this data object and the other data object
      Throws:
      ValueRuntimeException - if matrices have different lengths
    • minus

      public final FloatMatrixData minus​(FloatMatrixData right)
      Subtract two matrices on a cell-by-cell basis. If both matrices are sparse, a sparse matrix is returned, otherwise a dense matrix is returned.
      Specified by:
      minus in class FloatMatrixData
      Parameters:
      right - FloatMatrixData; the other data object to subtract
      Returns:
      the sum of this data object and the other data object
    • times

      public FloatMatrixData times​(FloatMatrixData right) throws ValueRuntimeException
      Multiply two matrices on a cell-by-cell basis. If both matrices are dense, a dense matrix is returned, otherwise a sparse matrix is returned.
      Specified by:
      times in class FloatMatrixData
      Parameters:
      right - FloatMatrixData; the other data object to multiply with
      Returns:
      FloatMatrixData; a new double matrix data store holding the result of the multiplications
      Throws:
      ValueRuntimeException - if matrices have different sizes
    • divide

      public FloatMatrixData divide​(FloatMatrixData right) throws ValueRuntimeException
      Divide two matrices on a cell-by-cell basis. If both matrices are dense, a dense matrix is returned, otherwise a sparse matrix is returned.
      Specified by:
      divide in class FloatMatrixData
      Parameters:
      right - FloatMatrixData; the other data object to divide by
      Returns:
      the sum of this data object and the other data object
      Throws:
      ValueRuntimeException - if matrices have different sizes
    • hashCode

      public int hashCode()
      Overrides:
      hashCode in class FloatMatrixData
    • equals

      public boolean equals​(Object obj)
      Overrides:
      equals in class FloatMatrixData