View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.regex.Matcher;
4   
5   import javax.annotation.Generated;
6   
7   import org.djunits.Throw;
8   import org.djunits.unit.DimensionlessUnit;
9   import org.djunits.unit.DurationUnit;
10  import org.djunits.unit.ElectricalCapacitanceUnit;
11  import org.djunits.unit.ElectricalChargeUnit;
12  import org.djunits.unit.ElectricalConductanceUnit;
13  import org.djunits.value.util.ValueUtil;
14  import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRel;
15  
16  /**
17   * Easy access methods for the FloatElectricalCapacitance FloatScalar, which is relative by definition.
18   * <p>
19   * Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
20   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
21   * </p>
22   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
23   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
24   */
25  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2019-10-18T12:12:25.568Z")
26  public class FloatElectricalCapacitance extends AbstractFloatScalarRel<ElectricalCapacitanceUnit, FloatElectricalCapacitance>
27  {
28      /** */
29      private static final long serialVersionUID = 20150901L;
30  
31      /** Constant with value zero. */
32      public static final FloatElectricalCapacitanceicalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance ZERO = new FloatElectricalCapacitance(0.0f, ElectricalCapacitanceUnit.SI);
33  
34      /** Constant with value one. */
35      public static final FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance ONE = new FloatElectricalCapacitance(1.0f, ElectricalCapacitanceUnit.SI);
36  
37      /** Constant with value NaN. */
38      @SuppressWarnings("checkstyle:constantname")
39      public static final FloatElectricalCapacitance NaN =
40              new FloatElectricalCapacitance(Float.NaN, ElectricalCapacitanceUnit.SI);
41  
42      /** Constant with value POSITIVE_INFINITY. */
43      public static final FloatElectricalCapacitance POSITIVE_INFINITY =
44              new FloatElectricalCapacitance(Float.POSITIVE_INFINITY, ElectricalCapacitanceUnit.SI);
45  
46      /** Constant with value NEGATIVE_INFINITY. */
47      public static final FloatElectricalCapacitance NEGATIVE_INFINITY =
48              new FloatElectricalCapacitance(Float.NEGATIVE_INFINITY, ElectricalCapacitanceUnit.SI);
49  
50      /** Constant with value MAX_VALUE. */
51      public static final FloatElectricalCapacitance POS_MAXVALUE =
52              new FloatElectricalCapacitance(Float.MAX_VALUE, ElectricalCapacitanceUnit.SI);
53  
54      /** Constant with value -MAX_VALUE. */
55      public static final FloatElectricalCapacitance NEG_MAXVALUE =
56              new FloatElectricalCapacitance(-Float.MAX_VALUE, ElectricalCapacitanceUnit.SI);
57  
58      /**
59       * Construct FloatElectricalCapacitance scalar.
60       * @param value float; the float value
61       * @param unit unit for the float value
62       */
63      public FloatElectricalCapacitance(final float value, final ElectricalCapacitanceUnit unit)
64      {
65          super(value, unit);
66      }
67  
68      /**
69       * Construct FloatElectricalCapacitance scalar.
70       * @param value Scalar from which to construct this instance
71       */
72      public FloatElectricalCapacitancelectricalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance(final FloatElectricalCapacitance value)
73      {
74          super(value);
75      }
76  
77      /**
78       * Construct FloatElectricalCapacitance scalar using a double value.
79       * @param value double; the double value
80       * @param unit unit for the resulting float value
81       */
82      public FloatElectricalCapacitance(final double value, final ElectricalCapacitanceUnit unit)
83      {
84          super((float) value, unit);
85      }
86  
87      /** {@inheritDoc} */
88      @Override
89      public final FloatElectricalCapacitance instantiateRel(final float value, final ElectricalCapacitanceUnit unit)
90      {
91          return new FloatElectricalCapacitance(value, unit);
92      }
93  
94      /**
95       * Construct FloatElectricalCapacitance scalar.
96       * @param value float; the float value in SI units
97       * @return the new scalar with the SI value
98       */
99      public static final FloatElectricalCapacitance instantiateSI(final float value)
100     {
101         return new FloatElectricalCapacitance(value, ElectricalCapacitanceUnit.SI);
102     }
103 
104     /**
105      * Interpolate between two values.
106      * @param zero the low value
107      * @param one the high value
108      * @param ratio double; the ratio between 0 and 1, inclusive
109      * @return a Scalar at the ratio between
110      */
111     public static FloatElectricalCapacitanceacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance interpolate(final FloatElectricalCapacitance zero,
112             final FloatElectricalCapacitance one, final float ratio)
113     {
114         return new FloatElectricalCapacitance(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
115                 zero.getDisplayUnit());
116     }
117 
118     /**
119      * Return the maximum value of two relative scalars.
120      * @param r1 the first scalar
121      * @param r2 the second scalar
122      * @return the maximum value of two relative scalars
123      */
124     public static FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance max(final FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance r1, final FloatElectricalCapacitance r2)
125     {
126         return (r1.gt(r2)) ? r1 : r2;
127     }
128 
129     /**
130      * Return the maximum value of more than two relative scalars.
131      * @param r1 the first scalar
132      * @param r2 the second scalar
133      * @param rn the other scalars
134      * @return the maximum value of more than two relative scalars
135      */
136     public static FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance max(final FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance r1, final FloatElectricalCapacitance r2,
137             final FloatElectricalCapacitance... rn)
138     {
139         FloatElectricalCapacitance maxr = (r1.gt(r2)) ? r1 : r2;
140         for (FloatElectricalCapacitance r : rn)
141         {
142             if (r.gt(maxr))
143             {
144                 maxr = r;
145             }
146         }
147         return maxr;
148     }
149 
150     /**
151      * Return the minimum value of two relative scalars.
152      * @param r1 the first scalar
153      * @param r2 the second scalar
154      * @return the minimum value of two relative scalars
155      */
156     public static FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance min(final FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance r1, final FloatElectricalCapacitance r2)
157     {
158         return (r1.lt(r2)) ? r1 : r2;
159     }
160 
161     /**
162      * Return the minimum value of more than two relative scalars.
163      * @param r1 the first scalar
164      * @param r2 the second scalar
165      * @param rn the other scalars
166      * @return the minimum value of more than two relative scalars
167      */
168     public static FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance min(final FloatElectricalCapacitancericalCapacitance.html#FloatElectricalCapacitance">FloatElectricalCapacitance r1, final FloatElectricalCapacitance r2,
169             final FloatElectricalCapacitance... rn)
170     {
171         FloatElectricalCapacitance minr = (r1.lt(r2)) ? r1 : r2;
172         for (FloatElectricalCapacitance r : rn)
173         {
174             if (r.lt(minr))
175             {
176                 minr = r;
177             }
178         }
179         return minr;
180     }
181 
182     /**
183      * Returns a FloatElectricalCapacitance representation of a textual representation of a value with a unit. The String
184      * representation that can be parsed is the double value in the unit, followed by the official abbreviation of the unit.
185      * Spaces are allowed, but not required, between the value and the unit.
186      * @param text String; the textual representation to parse into a FloatElectricalCapacitance
187      * @return FloatElectricalCapacitance; the Scalar representation of the value in its unit
188      * @throws IllegalArgumentException when the text cannot be parsed
189      * @throws NullPointerException when the text argument is null
190      */
191     public static FloatElectricalCapacitance valueOf(final String text)
192     {
193         Throw.whenNull(text, "Error parsing FloatElectricalCapacitance: text to parse is null");
194         Throw.when(text.length() == 0, IllegalArgumentException.class,
195                 "Error parsing FloatElectricalCapacitance: empty text to parse");
196         Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
197         if (matcher.find())
198         {
199             int index = matcher.end();
200             String unitString = text.substring(index).trim();
201             String valueString = text.substring(0, index).trim();
202             ElectricalCapacitanceUnit unit = ElectricalCapacitanceUnit.BASE.getUnitByAbbreviation(unitString);
203             if (unit != null)
204             {
205                 float f = Float.parseFloat(valueString);
206                 return new FloatElectricalCapacitance(f, unit);
207             }
208         }
209         throw new IllegalArgumentException("Error parsing FloatElectricalCapacitance from " + text);
210     }
211 
212     /**
213      * Returns a FloatElectricalCapacitance based on a value and the textual representation of the unit.
214      * @param value double; the value to use
215      * @param unitString String; the textual representation of the unit
216      * @return FloatElectricalCapacitance; the Scalar representation of the value in its unit
217      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
218      * @throws NullPointerException when the unitString argument is null
219      */
220     public static FloatElectricalCapacitance of(final float value, final String unitString)
221     {
222         Throw.whenNull(unitString, "Error parsing FloatElectricalCapacitance: unitString is null");
223         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
224                 "Error parsing FloatElectricalCapacitance: empty unitString");
225         ElectricalCapacitanceUnit unit = ElectricalCapacitanceUnit.BASE.getUnitByAbbreviation(unitString);
226         if (unit != null)
227         {
228             return new FloatElectricalCapacitance(value, unit);
229         }
230         throw new IllegalArgumentException("Error parsing FloatElectricalCapacitance with unit " + unitString);
231     }
232 
233     /**
234      * Calculate the division of FloatElectricalCapacitance and FloatElectricalCapacitance, which results in a
235      * FloatDimensionless scalar.
236      * @param v FloatElectricalCapacitance scalar
237      * @return FloatDimensionless scalar as a division of FloatElectricalCapacitance and FloatElectricalCapacitance
238      */
239     public final FloatDimensionless divide(final FloatElectricalCapacitance v)
240     {
241         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
242     }
243 
244     /**
245      * Calculate the multiplication of FloatElectricalCapacitance and FloatElectricalPotential, which results in a
246      * FloatElectricalCharge scalar.
247      * @param v FloatElectricalCapacitance scalar
248      * @return FloatElectricalCharge scalar as a multiplication of FloatElectricalCapacitance and FloatElectricalPotential
249      */
250     public final FloatElectricalCharge times(final FloatElectricalPotential v)
251     {
252         return new FloatElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
253     }
254 
255     /**
256      * Calculate the division of FloatElectricalCapacitance and FloatDuration, which results in a FloatElectricalConductance
257      * scalar.
258      * @param v FloatElectricalCapacitance scalar
259      * @return FloatElectricalConductance scalar as a division of FloatElectricalCapacitance and FloatDuration
260      */
261     public final FloatElectricalConductance divide(final FloatDuration v)
262     {
263         return new FloatElectricalConductance(this.si / v.si, ElectricalConductanceUnit.SI);
264     }
265 
266     /**
267      * Calculate the division of FloatElectricalCapacitance and FloatElectricalConductance, which results in a FloatDuration
268      * scalar.
269      * @param v FloatElectricalCapacitance scalar
270      * @return FloatDuration scalar as a division of FloatElectricalCapacitance and FloatElectricalConductance
271      */
272     public final FloatDuration divide(final FloatElectricalConductance v)
273     {
274         return new FloatDuration(this.si / v.si, DurationUnit.SI);
275     }
276 
277 }