View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.regex.Matcher;
4   
5   import javax.annotation.Generated;
6   
7   import org.djunits.Throw;
8   import org.djunits.unit.DimensionlessUnit;
9   import org.djunits.unit.DurationUnit;
10  import org.djunits.unit.EnergyUnit;
11  import org.djunits.unit.ForceUnit;
12  import org.djunits.unit.LengthUnit;
13  import org.djunits.unit.PowerUnit;
14  import org.djunits.unit.PressureUnit;
15  import org.djunits.unit.VolumeUnit;
16  import org.djunits.value.util.ValueUtil;
17  import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRel;
18  
19  /**
20   * Easy access methods for the Energy DoubleScalar, which is relative by definition.
21   * <p>
22   * Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
23   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
24   * </p>
25   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
26   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
27   */
28  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2019-10-18T12:12:25.568Z")
29  public class Energy extends AbstractDoubleScalarRel<EnergyUnit, Energy>
30  {
31      /** */
32      private static final long serialVersionUID = 20150905L;
33  
34      /** Constant with value zero. */
35      public static final Energyle/scalar/Energy.html#Energy">Energy ZERO = new Energy(0.0, EnergyUnit.SI);
36  
37      /** Constant with value one. */
38      public static final Energyble/scalar/Energy.html#Energy">Energy ONE = new Energy(1.0, EnergyUnit.SI);
39  
40      /** Constant with value NaN. */
41      @SuppressWarnings("checkstyle:constantname")
42      public static final Energyble/scalar/Energy.html#Energy">Energy NaN = new Energy(Double.NaN, EnergyUnit.SI);
43  
44      /** Constant with value POSITIVE_INFINITY. */
45      public static final Energyrgy.html#Energy">Energy POSITIVE_INFINITY = new Energy(Double.POSITIVE_INFINITY, EnergyUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final Energyrgy.html#Energy">Energy NEGATIVE_INFINITY = new Energy(Double.NEGATIVE_INFINITY, EnergyUnit.SI);
49  
50      /** Constant with value MAX_VALUE. */
51      public static final Energyr/Energy.html#Energy">Energy POS_MAXVALUE = new Energy(Double.MAX_VALUE, EnergyUnit.SI);
52  
53      /** Constant with value -MAX_VALUE. */
54      public static final Energyr/Energy.html#Energy">Energy NEG_MAXVALUE = new Energy(-Double.MAX_VALUE, EnergyUnit.SI);
55  
56      /**
57       * Construct Energy scalar.
58       * @param value double; the double value
59       * @param unit EnergyUnit; unit for the double value
60       */
61      public Energy(final double value, final EnergyUnit unit)
62      {
63          super(value, unit);
64      }
65  
66      /**
67       * Construct Energy scalar.
68       * @param value Energy; Scalar from which to construct this instance
69       */
70      public Energyvdouble/scalar/Energy.html#Energy">Energy(final Energy value)
71      {
72          super(value);
73      }
74  
75      /** {@inheritDoc} */
76      @Override
77      public final Energy instantiateRel(final double value, final EnergyUnit unit)
78      {
79          return new Energy(value, unit);
80      }
81  
82      /**
83       * Construct Energy scalar.
84       * @param value double; the double value in SI units
85       * @return Energy; the new scalar with the SI value
86       */
87      public static final Energy instantiateSI(final double value)
88      {
89          return new Energy(value, EnergyUnit.SI);
90      }
91  
92      /**
93       * Interpolate between two values.
94       * @param zero Energy; the low value
95       * @param one Energy; the high value
96       * @param ratio double; the ratio between 0 and 1, inclusive
97       * @return Energy; a Scalar at the ratio between
98       */
99      public static Energye/scalar/Energy.html#Energy">Energyar/Energy.html#Energy">Energy interpolate(final Energye/scalar/Energy.html#Energy">Energy zero, final Energy one, final double ratio)
100     {
101         return new Energy(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio, zero.getDisplayUnit());
102     }
103 
104     /**
105      * Return the maximum value of two relative scalars.
106      * @param r1 Energy; the first scalar
107      * @param r2 Energy; the second scalar
108      * @return Energy; the maximum value of two relative scalars
109      */
110     public static Energyble/scalar/Energy.html#Energy">Energyble/scalar/Energy.html#Energy">Energy max(final Energyble/scalar/Energy.html#Energy">Energy r1, final Energy r2)
111     {
112         return (r1.gt(r2)) ? r1 : r2;
113     }
114 
115     /**
116      * Return the maximum value of more than two relative scalars.
117      * @param r1 Energy; the first scalar
118      * @param r2 Energy; the second scalar
119      * @param rn Energy...; the other scalars
120      * @return Energy; the maximum value of more than two relative scalars
121      */
122     public static Energyble/scalar/Energy.html#Energy">Energyble/scalar/Energy.html#Energy">Energy max(final Energyble/scalar/Energy.html#Energy">Energy r1, final Energy r2, final Energy... rn)
123     {
124         Energy maxr = (r1.gt(r2)) ? r1 : r2;
125         for (Energy r : rn)
126         {
127             if (r.gt(maxr))
128             {
129                 maxr = r;
130             }
131         }
132         return maxr;
133     }
134 
135     /**
136      * Return the minimum value of two relative scalars.
137      * @param r1 Energy; the first scalar
138      * @param r2 Energy; the second scalar
139      * @return Energy; the minimum value of two relative scalars
140      */
141     public static Energyble/scalar/Energy.html#Energy">Energyble/scalar/Energy.html#Energy">Energy min(final Energyble/scalar/Energy.html#Energy">Energy r1, final Energy r2)
142     {
143         return (r1.lt(r2)) ? r1 : r2;
144     }
145 
146     /**
147      * Return the minimum value of more than two relative scalars.
148      * @param r1 Energy; the first scalar
149      * @param r2 Energy; the second scalar
150      * @param rn Energy...; the other scalars
151      * @return Energy; the minimum value of more than two relative scalars
152      */
153     public static Energyble/scalar/Energy.html#Energy">Energyble/scalar/Energy.html#Energy">Energy min(final Energyble/scalar/Energy.html#Energy">Energy r1, final Energy r2, final Energy... rn)
154     {
155         Energy minr = (r1.lt(r2)) ? r1 : r2;
156         for (Energy r : rn)
157         {
158             if (r.lt(minr))
159             {
160                 minr = r;
161             }
162         }
163         return minr;
164     }
165 
166     /**
167      * Returns a Energy representation of a textual representation of a value with a unit. The String representation that can be
168      * parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are allowed, but not
169      * required, between the value and the unit.
170      * @param text String; the textual representation to parse into a Energy
171      * @return Energy; the Scalar representation of the value in its unit
172      * @throws IllegalArgumentException when the text cannot be parsed
173      * @throws NullPointerException when the text argument is null
174      */
175     public static Energy valueOf(final String text)
176     {
177         Throw.whenNull(text, "Error parsing Energy: text to parse is null");
178         Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Energy: empty text to parse");
179         Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
180         if (matcher.find())
181         {
182             int index = matcher.end();
183             String unitString = text.substring(index).trim();
184             String valueString = text.substring(0, index).trim();
185             EnergyUnit unit = EnergyUnit.BASE.getUnitByAbbreviation(unitString);
186             if (unit != null)
187             {
188                 double d = Double.parseDouble(valueString);
189                 return new Energy(d, unit);
190             }
191         }
192         throw new IllegalArgumentException("Error parsing Energy from " + text);
193     }
194 
195     /**
196      * Returns a Energy based on a value and the textual representation of the unit.
197      * @param value double; the value to use
198      * @param unitString String; the textual representation of the unit
199      * @return Energy; the Scalar representation of the value in its unit
200      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
201      * @throws NullPointerException when the unitString argument is null
202      */
203     public static Energy of(final double value, final String unitString)
204     {
205         Throw.whenNull(unitString, "Error parsing Energy: unitString is null");
206         Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Energy: empty unitString");
207         EnergyUnit unit = EnergyUnit.BASE.getUnitByAbbreviation(unitString);
208         if (unit != null)
209         {
210             return new Energy(value, unit);
211         }
212         throw new IllegalArgumentException("Error parsing Energy with unit " + unitString);
213     }
214 
215     /**
216      * Calculate the division of Energy and Energy, which results in a Dimensionless scalar.
217      * @param v Energy scalar
218      * @return Dimensionless scalar as a division of Energy and Energy
219      */
220     public final Dimensionless divide(final Energy v)
221     {
222         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
223     }
224 
225     /**
226      * Calculate the division of Energy and Force, which results in a Length scalar.
227      * @param v Energy scalar
228      * @return Length scalar as a division of Energy and Force
229      */
230     public final Length divide(final Force v)
231     {
232         return new Length(this.si / v.si, LengthUnit.SI);
233     }
234 
235     /**
236      * Calculate the division of Energy and Length, which results in a Force scalar.
237      * @param v Energy scalar
238      * @return Force scalar as a division of Energy and Length
239      */
240     public final Force divide(final Length v)
241     {
242         return new Force(this.si / v.si, ForceUnit.SI);
243     }
244 
245     /**
246      * Calculate the multiplication of Energy and LinearDensity, which results in a Force scalar.
247      * @param v Energy scalar
248      * @return Force scalar as a multiplication of Energy and LinearDensity
249      */
250     public final Force times(final LinearDensity v)
251     {
252         return new Force(this.si * v.si, ForceUnit.SI);
253     }
254 
255     /**
256      * Calculate the division of Energy and Duration, which results in a Power scalar.
257      * @param v Energy scalar
258      * @return Power scalar as a division of Energy and Duration
259      */
260     public final Power divide(final Duration v)
261     {
262         return new Power(this.si / v.si, PowerUnit.SI);
263     }
264 
265     /**
266      * Calculate the division of Energy and Power, which results in a Duration scalar.
267      * @param v Energy scalar
268      * @return Duration scalar as a division of Energy and Power
269      */
270     public final Duration divide(final Power v)
271     {
272         return new Duration(this.si / v.si, DurationUnit.SI);
273     }
274 
275     /**
276      * Calculate the division of Energy and Volume, which results in a Pressure scalar.
277      * @param v Energy scalar
278      * @return Pressure scalar as a division of Energy and Volume
279      */
280     public final Pressure divide(final Volume v)
281     {
282         return new Pressure(this.si / v.si, PressureUnit.SI);
283     }
284 
285     /**
286      * Calculate the division of Energy and Pressure, which results in a Volume scalar.
287      * @param v Energy scalar
288      * @return Volume scalar as a division of Energy and Pressure
289      */
290     public final Volume divide(final Pressure v)
291     {
292         return new Volume(this.si / v.si, VolumeUnit.SI);
293     }
294 
295     /**
296      * Calculate the multiplication of Energy and Frequency, which results in a Power scalar.
297      * @param v Energy scalar
298      * @return Power scalar as a multiplication of Energy and Frequency
299      */
300     public final Power times(final Frequency v)
301     {
302         return new Power(this.si * v.si, PowerUnit.SI);
303     }
304 
305 }